基于目标运动模型和观测模型的交互多模算法IMM卡尔曼滤波目标跟踪matlab仿真

简介: 基于目标运动模型和观测模型的交互多模算法IMM卡尔曼滤波目标跟踪matlab仿真

1.算法描述

   IMM算法的基本思想是用多个不同的运动模型匹配机动目标的不同运动模式,不同模型间的转移概率是–个马尔可夫矩阵,目标的状态估计和模型概率的更新使用卡尔曼滤波。

   交互式多模型 IMM(Interacting Multiple Model)控制算法的主体思想是基于贝叶斯理论而提出的模型间的自动识别与切换:在任意跟踪时刻,通过设置对应目标可能模型数量的模型滤波器来进行实时的机动模型检测,对每一个滤波器设置权重系数和模型更新的概率,最后加权计算得出当前最优估计状态,从而达到模型自适应跟踪的目的。

    机动目标模型描述了目标状态随着时间变化的过程。一个好的模型抵得上大量的数据。当前几乎所有的目标跟踪算法都是基于模型进行状态估计的。在卡尔曼滤波器被引入目标跟踪领域后,基于状态空间的机动目标建模成为主要研究对象之一。

  从算法层面,在机动目标跟踪系统中,常用的滤波算法是以卡尔曼滤波器为基本框架的估计算法。卡尔曼滤波器是一种线性、无偏、以误差均方差最小为准则的最优估计算法,它有精确的数学形式和优良的使用效能。卡尔曼滤波方法实质上是一种数据处理方法,它采用递推滤波方法,根据获取的量测数据由递推方程递推给出新的状态估计。由于计算量和存储量小,比较容易满足实时计算的要求,在工程实践中得到广泛应用。

    交互多模型(Interacting Multiple Model,简称IMM)算法具有自适应的特点,能够有效地对各个模型的概率进行调整,尤其适用于对机动目标的定位跟踪。交互式多模型算法包含了多个滤波器(各自对应着相应的模计器,一个交互式作用器和一个估计混合器),多模型通过交互作用跟踪一个目标的机动运动,各模型之间的转移由马尔可夫概率转移矩阵确定,其中的元素 表示目标由第i个运动模型转移到第j个运动模型的概率。

   在并行计算后,得到多个模型的后验概率,再结合每个模型的滤波估计输出结果,就可以计算各模型交互融合后的联合状态估计结果。

计算目标状态估计:

image.png

计算目标状态估计协方差:

image.png

2.仿真效果预览
matlab2022a仿真结果如下:
3.png
4.png
5.png
6.png

3.MATLAB核心程序

T=2;
I=diag([1,1,1,1,1,1]);
Phi=[1,T,0,0,(T^2)/2,0;0,1,0,0,T,0;0,0,1,T,0,(T^2)/2;0,0,0,1,0,T;0,0,0,0,1,0;0,0,0,0,0,1];
H=[1,0,0,0,0,0;0,0,1,0,0,0];
G=[(T^2)/2,0;T,0;0,(T^2)/2;0,T;1,0;0,1];
R=[10000,0;0,10000];     %  观测噪声方差阵
alpha=0.8;               %  加权衰减因子
window=1/(1-alpha);      %  检测机动的有效窗口长度
Xm_estimate(k-1,:)=Xm_est;
if qq==1   %由非机动进入机动模型,需进行修正, 初始化
    Xm_predict(k,:)=Xm_pre;
    Xm_estimate(k,5)=[z1(1)-Xm_predict(k,1)]*2/(T^2);
    Xm_estimate(k,6)=[z1(2)-Xm_predict(k,3)]*2/(T^2);
    Xm_estimate(k,1)=z1(1);
    Xm_estimate(k,3)=z1(2);
    Xm_estimate(k,2)=Xm_estimate(k-1,2)+Xm_estimate(k,5)*T;
    Xm_estimate(k,4)=Xm_estimate(k-1,4)+Xm_estimate(k,6)*T;
    % 修正协方差阵
    Pm_estimate(1,1)=R(1,1);
    Pm_estimate(3,3)=R(2,2);
 
    Pm_estimate(1,2)=R(1,1)*2/T;
    Pm_estimate(2,1)=Pm_estimate(1,2);
    Pm_estimate(3,4)=R(2,2)*2/T;
    Pm_estimate(4,3)=Pm_estimate(3,4);
 
    Pm_estimate(1,5)=R(1,1)*2/(T^2);
    Pm_estimate(5,1)=Pm_estimate(1,5);
    Pm_estimate(3,6)=R(2,2)*2/(T^2);
    Pm_estimate(6,3)=Pm_estimate(3,6);
 
    Pm_estimate(5,5)=[R(1,1)+P(1)+P(2)*2*T+P(3)*T*T]*4/(T^4);
    Pm_estimate(6,6)=[R(2,2)+P(4)+P(5)*2*T+P(6)*T*T]*4/(T^4);
 
    Pm_estimate(2,2)=R(1,1)*4/(T^2)+P(1)*4/(T^2)+P(3)+P(2)*4/T;
    Pm_estimate(4,4)=R(2,2)*4/(T^2)+P(4)*4/(T^2)+P(6)+P(5)*4/T;
 
    Pm_estimate(2,5)=R(1,1)*4/(T^3)+P(1)*4/(T^3)+P(3)*2/T+P(2)*6/(T^2);
    Pm_estimate(5,2)=Pm_estimate(2,5);
    Pm_estimate(4,6)=R(2,2)*4/(T^3)+P(4)*4/(T^3)+P(6)*2/T+P(5)*6/(T^2);
    Pm_estimate(6,4)=Pm_estimate(4,6);
    Xm_est=Xm_estimate(k,:);
 
    qq=0;%修正后,标志qq复位(不再初始化),ua1设为10,使不进入非机动模型
    ua1=10;
    m=0;
else 
    %  滤波方程
    Xm_predict(k,:)=(Phi*Xm_estimate(k-1,:)')';
    Q=[(Xm_estimate(k-1,5)/20)^2,0;0,(Xm_estimate(k-1,6)/20)^2];
    Pm_predict=Phi*Pm_estimate*(Phi)'+G*Q*G';
    K=Pm_predict*(H)'*inv(H*Pm_predict*(H)'+R);
    Xm_estimate(k,:)=(Xm_predict(k,:)'+K*(z1-H*Xm_predict(k,:)'))';
    Pm_estimate=(I-K*H)*Pm_predict;
    Xm_est=Xm_estimate(k,:);
    m=m+1;
    delta(k)=[Xm_estimate(k,5),Xm_estimate(k,6)]*[Pm_estimate(5,5),0;0,Pm_estimate(6,6)]*[Xm_estimate(k,5);Xm_estimate(k,6)];
    if m>=window
        ua(k)=delta(k)+delta(k-1)+delta(k-2)+delta(k-3)+delta(k-4);
        ua1=ua(k);
    else
        ua1=10;
    end
end
A105
相关文章
|
8天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
7天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
21天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
29天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1月前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。