m基于GA遗传优化算法的水库调度优化matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传优化算法的水库调度优化matlab仿真

1.算法描述

   遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。

   其主要步骤如下:

1.初始化

   选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。

   通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。

2.选择

  根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。

给出目标函数f,则f(bi)称为个体bi的适应度。以

为选中bi为下一代个体的次数。

显然.从式(3—86)可知:

(1)适应度较高的个体,繁殖下一代的数目较多。

(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。

这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。

3.交叉

   对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。

优化目标函数:

image.png

2.仿真效果预览
matlab2022a仿真如下:

2.png
3.png
4.png
5.png

3.MATLAB核心程序

for i = 1:T
    if T<=60
       Areas = [Areas,[600;800]];
    else
       Areas = [Areas,[1000;3000]]; 
    end
end
for i = 1:T
    if T<=60
       Areas = [Areas,[200;300]];%百色200m≤Q<300m3/s
    else
       Areas = [Areas,[150;1200]];%百色≥150m3/s,这里我加一个上限1200
    end
end
for i = 1:10*T
    Areas = [Areas,[100;800]];
end
 
 
FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])];
 
gen   = 0;
 
%计算对应的目标值
tmps         = repmat([400;400;400;400;400;400;400;400;400;400;400;400;400],[1,T]);
X            = tmps;%初始值
[fobj,P,E,E1,E2,E3] = func_obj(X);
E            = fobj;
Js           = E*ones(NIND,1);
Objv         = (Js+eps);
gen          = 0; 
 
%%
Z=[];
P=[];
E=[];
while gen < MAXGEN;   
      gen
      Pe0 = 0.996;
      pe1 = 0.004; 
 
      FitnV=ranking(Objv);    
      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,Pe0);   
      Selch=mut( Selch,pe1);   
      phen1=bs2rv(Selch,FieldD);   
 
      for a=1:1:NIND  
          
          X1          = phen1(a,:);
          tmps        = [reshape(X1,[13,T])];
          %计算对应的目标值
          [fobj,P,E,Ea,Eb,Ec,QWZt]  = func_obj(tmps);
          JJ(a,1)     = fobj;
          Xp{a}       = tmps;
          Ps(a)       = P;
          Es(a,:)       = [E,Ea,Eb,Ec];
      end 
      
      Objvsel=(JJ);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 
      %保存参数收敛过程和误差收敛过程以及函数值拟合结论
      Error(gen) = mean(JJ);
      Z2(gen)=[1/mean(JJ)];
      P2(gen)=mean(Ps);
      E2(gen)=mean(Es(:,1));
end 
 
figure;
plot(Error,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
 
figure;
plot(Z2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('Z');
 
figure;
plot(P2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('P');
 
figure;
plot(E2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('E');
 
X1=Xp{1};
tmps_       = [reshape(X1',[T,13])]';
 
for j = 1:13
    for i = 1:length(tmps_) 
        if i<=28
           tmps_(j,i) = 0.3*tmps_(j,i); 
        end   
    end
    for i = 1:length(tmps_)
        if i<=128
           tmps(j,i) = mean(tmps_(j,1:i)); 
        else
           tmps(j,i) = mean(tmps_(j,i-128:i));  
        end
    end
 
end
 
 
% 出库流量过程,tmps为3个点的不同时刻的流量输出,可以自己查看
% F1=tmps(1,:);% 光照
% F2=tmps(2,:);% 龙滩
% F3=tmps(3,:);% 白色
 
 
% 水位过程
h1=tmps(1,:);% 光照
Q1=3.54044*h1.^3-6833.14189*h1.^2+4396460*h1-942980000;
Q1=(Q1-4*min(Q1))/2e5;
h2=tmps(2,:);% 龙滩
Q2=0.00744*h2.^4-7.01935*h2.^3+2494.05375*h2.^2-394994.61347*h2+23495400;
Q2=(Q2)/4e5;
h3=tmps(3,:);% 白色
 
Q3=-0.08925*h3.^3+64.21189*h3.^2-11396.40577*h3+597219.15921;
Q3=(Q3-4*min(Q3))/1e5;
% 总发电量
E2(end);
% 光照
Ea = Es(1,2)
% 龙滩
Eb = Es(1,3)
% 白色
Ec = Es(1,4)
% 保证率
P2(end);
% 梧州流量
Fe=QWZt;
02_061m
相关文章
|
7天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
28天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1月前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
208 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
133 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)