大数据系统的Lambda架构

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据系统的Lambda架构

Mathan Marz的大作Big Data: Principles and best practices of scalable real-time data systems介绍了Labmda Architecture的概念,用于在大数据架构中,如何让real-time与batch job更好地结合起来,以达成对大数据的实时处理。


传统系统的问题


在传统数据库的设计中,无法很好地支持系统的可伸缩性。当用户访问量增加时,数据库无法满足日益增长的用户请求负载,从而导致数据库服务器无法及时响应用户请求,出现超时错误。


解决的办法是在Web服务器与数据库之间增加一个异步处理的队列。如下图所示:

image.png

当Web Server收到页面请求时,会将消息添加到队列中。在DB端,创建一个Worker定期从队列中取出消息进行处理,例如每次读取100条消息。这相当于在两者之间建立了一个缓冲。


但是,这一方案并没有从本质上解决数据库overload的问题,且当worker无法跟上writer的请求时,就需要增加多个worker并发执行,数据库又将再次成为响应请求的瓶颈。一个解决办法是对数据库进行分区(horizontal partitioning或者sharding)。分区的方式通常以Hash值作为key。这样就需要应用程序端知道如何去寻找每个key所在的分区。


问题仍然会随着用户请求的增加接踵而来。当之前的分区无法满足负载时,就需要增加更多分区,这时就需要对数据库进行reshard。resharding的工作非常耗时而痛苦,因为需要协调很多工作,例如数据的迁移、更新客户端访问的分区地址,更新应用程序代码。如果系统本身还提供了在线访问服务,对运维的要求就更高。稍有不慎,就可能导致数据写到错误的分区,因此必须要编写脚本来自动完成,且需要充分的测试。


即使分区能够解决数据库负载问题,却还存在容错性(Fault-Tolerance)的问题。解决办法:

  • 改变queue/worker的实现。当消息发送给不可用的分区时,将消息放到“pending”队列,然后每隔一段时间对pending队列中的消息进行处理。

  • 使用数据库的replication功能,为每个分区增加slave。


问题并没有得到完美地解决。假设系统出现问题,例如在应用系统代码端不小心引入了一个bug,使得对页面的请求重复提交了一次,这就导致了重复的请求数据。糟糕的是,直到24小时之后才发现了该问题,此时对数据的破坏已经造成了。即使每周的数据备份也无法解决此问题,因为它不知道到底是哪些数据受到了破坏(corrupiton)。由于人为错误总是不可避免的,我们在架构时应该如何规避此问题?


现在,架构变得越来越复杂,增加了队列、分区、复制、重分区脚本(resharding scripts)。应用程序还需要了解数据库的schema,并能访问到正确的分区。问题在于:数据库对于分区是不了解的,无法帮助你应对分区、复制与分布式查询。最糟糕的问题是系统并没有为人为错误进行工程设计,仅靠备份是不能治本的。归根结底,系统还需要限制因为人为错误导致的破坏。


数据系统的概念


大数据处理技术需要解决这种可伸缩性与复杂性。首先要认识到这种分布式的本质,要很好地处理分区与复制,不会导致错误分区引起查询失败,而是要将这些逻辑内化到数据库中。当需要扩展系统时,可以非常方便地增加节点,系统也能够针对新节点进行rebalance。


其次是要让数据成为不可变的。原始数据永远都不能被修改,这样即使犯了错误,写了错误数据,原来好的数据并不会受到破坏。


何谓“数据系统”?Mathan Marz认为:

如果数据系统通过查找过去的数据去回答问题,则通常需要访问整个数据集。因此可以给data system的最通用的定义:

Query = function(all data)


一个大数据系统必须具备的属性包括:

  • 健壮性和容错性(Robustness和Fault Tolerance)
  • 低延迟的读与更新(Low Latency reads and updates)
  • 可伸缩性(Scalability)
  • 通用性(Generalization)
  • 可扩展性(Extensibility)
  • 内置查询(Ad hoc queries)
  • 维护最小(Minimal maintenance)
  • 可调试性(Debuggability)


Lambda架构


Lambda架构的主要思想就是将大数据系统构建为多个层次,如下图所示:

0a2653c851af460fa595bd959398a8f1.png

理想状态下,任何数据访问都可以从表达式Query = function(all data)开始,但是,若数据达到相当大的一个级别(例如PB),且还需要支持实时查询时,就需要耗费非常庞大的资源。


一个解决方式是预运算查询函数(precomputed query funciton)。Mathan Marz将这种预运算查询函数称之为Batch View,当需要执行查询时,可以从Batch View中读取结果。这样一个预先运算好的View是可以建立索引的,因而可以支持随机读取。于是系统就变成:

batch view = function(all data)
query = function(batch view)


Batch Layer


在Lambda架构中,实现batch view = function(all data)的部分被称之为batch layer。它承担了两个职责:

  • 存储Master Dataset,这是一个不变的持续增长的数据集
  • 针对这个Master Dataset进行预运算


显然,Batch Layer执行的是批量处理,例如Hadoop或者Spark支持的Map-Reduce方式。 它的执行方式可以用一段伪代码来表示:

function runBatchLayer():
  while (true):
    recomputeBatchViews()


例如这样一段代码:

Api.execute(Api.hfsSeqfile("/tmp/pageview-counts"),
     new Subquery("?url", "?count")
         .predicate(Api.hfsSeqfile("/data/pageviews"),
             "?url", "?user", "?timestamp")
         .predicate(new Count(), "?count");


代码并行地对hdfs文件夹下的page views进行统计(count),合并结果,并将最终结果保存在pageview-counts文件夹下。


利用Batch Layer进行预运算的作用实际上就是将大数据变小,从而有效地利用资源,改善实时查询的性能。但这里有一个前提,就是我们需要预先知道查询需要的数据,如此才能在Batch Layer中安排执行计划,定期对数据进行批量处理。此外,还要求这些预运算的统计数据是支持合并(merge)的。


Serving Layer


Batch Layer通过对master dataset执行查询获得了batch view,而Serving Layer就要负责对batch view进行操作,从而为最终的实时查询提供支撑。因此Serving Layer的职责包含:

  • 对batch view的随机访问
  • 更新batch view


Serving Layer应该是一个专用的分布式数据库,例如Elephant DB,以支持对batch view的加载、随机读取以及更新。注意,它并不支持对batch view的随机写,因为随机写会为数据库引来许多复杂性。简单的特性才能使系统变得更健壮、可预测、易配置,也易于运维。


Speed Layer


只要batch layer完成对batch view的预计算,serving layer就会对其进行更新。这意味着在运行预计算时进入的数据不会马上呈现到batch view中。这对于要求完全实时的数据系统而言是不能接受的。要解决这个问题,就要通过speed layer。从对数据的处理来看,speed layer与batch layer非常相似,它们之间最大的区别是前者只处理最近的数据,后者则要处理所有的数据。另一个区别是为了满足最小的延迟,speed layer并不会在同一时间读取所有的新数据,相反,它会在接收到新数据时,更新realtime view,而不会像batch layer那样重新运算整个view。speed layer是一种增量的计算,而非重新运算(recomputation)。


因而,Speed Layer的作用包括:

  • 对更新到serving layer带来的高延迟的一种补充
  • 快速、增量的算法
  • 最终Batch Layer会覆盖speed layer


Speed Layer的等式表达如下所示:

realtime view = function(realtime view, new data)


注意,realtime view是基于新数据和已有的realtime view。


总结下来,Lambda架构就是如下的三个等式:

batch view = function(all data)
realtime view = function(realtime view, new data)
query = function(batch view . realtime view)


整个Lambda架构如下图所示:

image.png


基于Lambda架构,一旦数据通过batch layer进入到serving layer,在realtime view中的相应结果就不再需要了。

说明:本文内容摘译自Mathan Marz的大作Big Data: Principles and best practices of salable real-time data systems.


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
22天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
143 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
16天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
54 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
15天前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
166 8
|
12天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
17天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
53 3
|
15天前
|
前端开发 搜索推荐 安全
陪玩系统架构设计陪玩系统前后端开发,陪玩前端设计是如何让人眼前一亮的?
陪玩系统的架构设计、前后端开发及前端设计是构建吸引用户、功能完善的平台关键。架构需考虑用户需求、技术选型、安全性等,确保稳定性和扩展性。前端可选用React、Vue或Uniapp,后端用Spring Boot或Django,数据库结合MySQL和MongoDB。功能涵盖用户管理、陪玩者管理、订单处理、智能匹配与通讯。安全性方面采用SSL加密和定期漏洞扫描。前端设计注重美观、易用及个性化推荐,提升用户体验和平台粘性。
46 0
|
15天前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
36 0
|
15天前
|
监控 Java 数据中心
微服务架构系统稳定性的神器-Hystrix
Hystrix是由Netflix开源的库,主要用于微服务架构中的熔断器模式,防止服务调用失败引发级联故障。它通过监控服务调用的成功和失败率,在失败率达到阈值时触发熔断,阻止后续调用,保护系统稳定。Hystrix具备熔断器、资源隔离、降级机制和实时监控等功能,提升系统的容错性和稳定性。然而,Hystrix也存在性能开销、配置复杂等局限,并已于2018年进入维护模式。
26 0
|
30天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
47 3

热门文章

最新文章