m基于GA遗传算法的PMSM永磁同步电机参数最优计算matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传算法的PMSM永磁同步电机参数最优计算matlab仿真

1.算法描述

   永磁同步电机(PMSM)基本结构为定子、转子和端盖。其中转子磁路结构是永磁同步电机与其它电机最主要的区别,其在很大程度上决定了永磁同步电机的实际性能指标。通常情况下,永磁同步电机的转子磁路结构分为:凸装式、嵌入式和内置式三种结构。目前为止,由于永磁同步电机优越的性能,其越来越受到国内外专家学者的重视,并广泛应用到了工业领域的各个方面。

1.png
2.png

遗传算法的优化目标可以用如下公式表示:

3.png

表示yai控制输出结果;变量ybi表示标准电机的控制输出结果。

    基于遗传算法的优化设计方案是目前应用较为广泛的一种优化方法,其在各个工程应用领域具有较多的使用。特别是对于较为复杂的系统,其性能往往是收到诸多因素影响的,而为了达到系统的最佳性能,则需要搜索最佳的参数组合,使得系统具备高性能,低功耗,低成本等优势。而传统的多个参数的最优组合计算往往计算过程较为复杂,而且得到的参数组合也不一定是真实的最优参数,存在较多的问题,而采用遗传优化算法则可以得到提高搜索最优参数组合的效率,并使得参数组合尽可能的接近真实的最优解。

    在工程上,通过将电机的设计转换为最优问题,通过数学规划的方法,并借助计算机编程实现算法的高效稳定的运算。GA遗传算法是目前应用最为广泛的全局优化算法,其可以有效解决局部优化问题,并且适用于多目标的优化问题。

  遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律演化而来的随机化搜索方法[17]。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域,它是现代有关智能计算中的关键技术。因此,遗传算法本质上是一种搜索最优解的优化技术,其根据适应度函数进行优化,通过种群个体一代又一代的逼近来实现优化功能。

目前,遗传算法主要有如下几个方面的应用:

第一、目标函数的优化处理。目标函数的优化处理是遗传算法最为主要的应用之一,适用于单目标优化问题,多目标优化问题,线性目标优化问题以及非线性目标处理问题等多个领域。

第二、生产调度的优化处理。通过遗传算法可以实现较为复杂的同步电机优化设计问题。

第三、组合优化处理。由于优化问题的日益复杂化,组合优化的优化处理方式得到越来越多的应用,在控制领域,图像处理以及机器学习方面都有着广泛的应用。而遗传算法在求解组合优化问题方面有着较强的计算能力。

   基于遗传算法的电机优化设计流程图如下所示:

4.png

2.仿真效果预览
matlab2022a仿真如下:

5.png
6.png
7.png
8.png
9.png
10.png
11.png
12.png

3.MATLAB核心程序

Rs     = 0.712; %转子电阻
Rr     = 3.789; %定子电阻
M      = 0.295; %磁链
Ld     = 0.311; %d轴电感
Lq     = 0.311; %q轴电感
p      = 2.0;   %极对数
J      = 0.003; %转动惯量
%%
%下面开始使用遗传优化算法
%根据遗传算法进行参数的拟合
MAXGEN = 200;
NIND   = 20;
Nums   = 7;
 
Chrom  = crtbp(NIND,Nums*10);
Sm     = 0.001;
Areas  = [Sm,Sm,Sm,Sm,Sm,1,Sm;
          1,4,1,1,1,4,0.01];
 
FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])];
 
Data1  = zeros(NIND,Nums);
Data2  = zeros(MAXGEN,Nums); 
 
gen   = 0;
% randperm(A*B*C)
for a=1:1:NIND 
    %计算对应的目标值
    epls       = func_obj(Rs,Rr,M,Ld,Lq,p,J);
    E          = epls;
    Js(a,1)    = E;
end
 
Objv  = (Js+eps);
gen   = 0; 
 
 
%%
Rs3     = []; %转子电阻
Rr3     = []; %定子电阻
M3      = []; %磁链
Ld3     = []; %d轴电感
Lq3     = []; %q轴电感
p3      = [];   %极对数
J3      = []; %转动惯量
 
Rs4     = []; %转子电阻
Rr4     = []; %定子电阻
M4      = []; %磁链
Ld4     = []; %d轴电感
Lq4     = []; %q轴电感
p4      = [];   %极对数
J4      = []; %转动惯量
while gen < MAXGEN;   
      gen
      Pe0 = 0.995;
      pe1 = 0.005; 
      
      
 
      
      FitnV=ranking(Objv);    
      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,Pe0);   
      Selch=mut( Selch,pe1);   
      phen1=bs2rv(Selch,FieldD);   
      
      
      size(Objv)
      size(Chrom)
      size(FitnV)
      
      
      Rs = [];
      Rr = [];   
      M  = [];      
      Ld = [];
      Lq = [];   
      p  = [];     
      J  = []; 
      for a=1:1:NIND  
          Rs(a) = phen1(a,1);
          Rr(a) = phen1(a,2); 
          M(a)  = phen1(a,3); 
          Ld(a) = phen1(a,4); 
          Lq(a) = phen1(a,5); 
          p(a)  = floor(phen1(a,6))+1; 
          J(a)  = phen1(a,7); 
          %计算对应的目标值
          epls    = func_obj(Rs(a),Rr(a),M(a),Ld(a),Lq(a),p(a),J(a));
          E       = epls;
          JJ(a,1) = E;
      end 
      
      Objvsel=(JJ);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 
 
      %保存参数收敛过程和误差收敛过程以及函数值拟合结论
      index1     = isnan(JJ);
      index2     = find(index1 == 1);
      JJ(index2) = [];
      Error2(gen) = min(JJ);
      [VV,II]=min(JJ);
      
Rs3(gen)     = [mean(Rs)]; %转子电阻
Rr3(gen)     = [mean(Rr)]; %定子电阻
M3(gen)      = [mean(M)]; %磁链
Ld3(gen)     = [mean(Ld)]; %d轴电感
Lq3(gen)     = [mean(Lq)]; %q轴电感
p3(gen)      = [mean(p)];   %极对数
J3(gen)      = [mean(J)]; %转动惯量
 
 
 
 
 
if gen<=64
    Rs4     = [Rs4,mean(Rs3(1:gen))]; %转子电阻
    Rr4     = [Rr4,mean(Rr3(1:gen))]; %定子电阻
    M4      = [M4,mean(M3(1:gen))]; %磁链
    Ld4     = [Ld4,mean(Ld3(1:gen))]; %d轴电感
    Lq4     = [Lq4,mean(Lq3(1:gen))]; %q轴电感
    p4      = [p4,mean(p3(1:gen))];   %极对数
    J4      = [J4,mean(J3(1:gen))]; %转动惯量
else
    Rs4     = [Rs4,mean(Rs3(gen-64:gen))]; %转子电阻
    Rr4     = [Rr4,mean(Rr3(gen-64:gen))]; %定子电阻
    M4      = [M4,mean(M3(gen-64:gen))]; %磁链
    Ld4     = [Ld4,mean(Ld3(gen-64:gen))]; %d轴电感
    Lq4     = [Lq4,mean(Lq3(gen-64:gen))]; %q轴电感
    p4      = [p4,mean(p3(gen-64:gen))];   %极对数
    J4      = [J4,mean(J3(gen-64:gen))]; %转动惯量
end
 
end 
[V,I] = min(JJ);
V
Rs_best = Rs(I) 
Rr_best = Rr(I)    
M_best  = M(I)  
Ld_best = Ld(I) 
Lq_best = Lq(I)  
p_best  = p(I) 
J_best  = J(I)
save result.mat Rs_best Rr_best M_best Ld_best Lq_best p_best J_best
02_042m
相关文章
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
14天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
33 3
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
149 29
|
1月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
2月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
3月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。

热门文章

最新文章