【车间调度】基于NSGAII算法求解两个AGV柔性生产调度问题GA-FJSP附matlab代码

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 【车间调度】基于NSGAII算法求解两个AGV柔性生产调度问题GA-FJSP附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

一种基于多约束的多目标柔性作业车间节能调度方法.NSGA(非支配排序遗传算法)、NSGAII(带精英策略的非支配排序的遗传算法),都是基于遗传算法的多目标优化算法,都是基于pareto最优解讨论的多目标优化.

⛄ 部分代码

LS_num = 0.2 * Pop_size;

MS = CHS_Matrix(LS_num, Len_Chromo);

os_list = OS_list(J);

OS = CHS_Matrix(LS_num, Len_Chromo);

for i = 1 : LS_num

   os_list = os_list(randperm(length(os_list)));%打乱的工序排序给分配到OS中

   OS(i,:) = os_list;

   GJ_list = [];

   for gj = 1 : J_num

       GJ_list = [GJ_list,gj];

   end

   for ii = GJ_list

       M_burden = zeros(1,M_num);  %用于存放每个机器的负荷

       allMachine = M{ii}; %allMachine是工件号g的所有工序的加工机器矩阵,是一个列表套列表

       allMachineT = MT{ii};

       for j = 1 : length(allMachine)

           Machine_Select = [];

           List = allMachine{j}; % 存放该工序的可用机器号

           ListT = allMachineT{j};

           List_Useful_Machine = [];

           for num = 1 : length(List)

               List_Useful_Machine = [List_Useful_Machine,List{num}];

           end

           for Mm = List_Useful_Machine

               index = List_Useful_Machine == Mm;

               M_burden(Mm) = M_burden(Mm) + ListT{index};

               Machine_Select = [Machine_Select,M_burden(Mm)]; %对应位置相加得到各个机器累计加工时间

           end

           [~,Min_index] = min(Machine_Select);

           site = Site(ii, j, J);

           line = MS(i,:);

           line(site) = Min_index ;

           MS(i,:) = line;

       end

   end

end

Chromo_LS =[MS,OS];

⛄ 运行结果

⛄ 参考文献

[1]陈辅斌, 李忠学, 杨喜娟. 基于改进NSGA2算法的多目标柔性作业车间调度[J]. 工业工程, 2018, 21(2):7.

[2]陆科苗, 何利力. 基于改进NSGA-Ⅱ混合算法求解多目标柔性作业车间调度问题[J]. 智能计算机与应用, 2022, 12(7):6.

[3]杜晓亮, 张楠, 孟凡云,等. 改进NSGA2算法求解柔性作业车间调度问题[J]. 组合机床与自动化加工技术, 2022(005):000.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
4天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
6天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
2天前
|
机器学习/深度学习 资源调度 算法
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
|
8天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。
|
19天前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的参数,可以有效提高控制系统的性能。本文详细介绍了GA优化PID参数的原理、适应度函数的设计以及MATLAB实现步骤,并通过仿真验证了优化效果。希望本文能为读者在实际应用中提供参考和帮助。
54 18
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
24天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。

热门文章

最新文章