软件版本的GA、RC的具体含义

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 软件版本的GA、RC的具体含义

别人的示意图:


image.png


GA

General Availability,正式发布的版本,官方开始推荐广泛使用,可以GA来表示release版本。


RELEASE

正式发布版,官方推荐使用的版本,有的用GA来表示。比如spring。


Stable

稳定版,开源软件有的会用stable来表示正式发布的版本。比如Nginx。


Final

最终版,也是正式发布版的一种表示方法。比如Hibernate。


RC

Release Candidate,发行候选版本,基本不再加入新的功能,主要修复bug。是最终发布成正式版的前一个版本,将bug修改完就可以发布成正式版了。


RTM

Release To Manufactory。就是正式版本,由工厂制作光盘。


alpha

α是希腊字母的第一个,表示最早的版本,内部测试版,一般不向外部发布,bug会比较多,功能也不全,一般只有测试人员使用。


beta

β是希腊字母的第二个,公开测试版,比alpha版本晚些,主要会有“粉丝用户”测试使用,该版本仍然存在很多bug,但比alpha版本稳定一些。这个阶段版本还会不断增加新功能。分为Beta1、Beta2等,直到逐渐稳定下来进入RC版本。

目录
相关文章
|
Java 测试技术 Apache
软件版本GA,RC,alpha,beta,Build 含义
软件版本GA,RC,alpha,beta,Build 含义
125 0
|
Java 应用服务中间件 数据库连接
【软件版本】软件版本GA、RC、Beta、Alpha等的详细解释和含义
【软件版本】软件版本GA、RC、Beta、Alpha等的详细解释和含义
303 0
|
7天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
16天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
169 15
|
9天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。