经典神经网络 | Faster R-CNN 论文解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 经典神经网络 | Faster R-CNN 论文解析

2a5ccc6ca283f965bda0e5c8ce38f005.png

作者及单位

研究目标


Faster R-CNN是为了改进Fast R-CNN而提出来的。因为在Fast R-CNN文章中的测试时间是不包括search selective时间的,而在测试时很大的一部分时间要耗费在候选区域的提取上。所以作者提出了RPN来提取候选框,使时间大大的减少了。

Faster R—CNN网络介绍


3af936a534c336c64be0fa7f72787858.png

Faster R—CNN具体可分为四个结构:

  • Conv layers:作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。
  • Region Proposal Networks:RPN网络用于生成region proposals。该层通过softmax判断anchors属于 positive或者 negative,再利用bounding box regression修正anchors获得精确的proposals。
  • Roi Pooling:该层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,送入后续全连接层判定目标类别。
  • Classification:利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得检测框最终的精确位置。

下图是VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成positive anchors和对应bounding box regression偏移量,然后计算出proposals;而Roi Pooling层则利用proposals从feature maps中提取proposal feature送入后续全连接和softmax网络作classification。

7e1f59fd6ea1dab0aaec6da1fb6c7aed.jpg

python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构。Conv layers部分共有13个conv层,13个relu层,4个pooling层

Conv layers


Conv layers包含了conv,pooling,relu三种层。所有的conv层都是:kernel_size=3,pad=1,stride=1。所有的pooling层都是:kernel_size=2,pad=1,stride=1。

Region Proposal NetWork(RPN)


经典的检测方法生成检测框都非常耗时,如R-CNN使用SS(Selective Search)方法生成检测框。而Faster RCNN则抛弃了传统的滑动窗口和SS方法,直接使用RPN生成检测框,这也是Faster R-CNN的巨大优势,能极大提升检测框的生成速度。

70f596ac4cafbbd05fc1b674c71ddb91.jpg

RPN网络结构

上图展示了RPN网络的具体结构。可以看到RPN网络实际分为2条线,上面一条通过softmax分类anchors获得positive和negative分类,下面一条用于计算对于anchors的bounding box regression偏移量,以获得精确的proposal。而最后的Proposal层则负责综合positive anchors和对应bounding box regression偏移量获取proposals,同时剔除太小和超出边界的proposals。其实整个网络到了Proposal Layer这里,就完成了相当于目标定位的功能。

Anchor

在每个滑动窗口的位置,我们同时预测多个Region Proposal,每个位置最大可能的Proposal设置为k。每个回归层输出4k个坐标(即x,y,w,h),分类层输出2k个Scores。RPN默认设置为3 Scale,3 aspect ratios,因此每个位置输出9个anchor。对于大小为W×H(通常为2400)的卷积特征图,总共有W Hkanchor。如下图所示:

679634f6b586bbe7fa41a906e4b6baca.png

注意:全部anchors拿去训练太多了,训练程序会在合适的anchors中随机选取128个postive anchors+128个negative anchors进行训练

Loss Function


我们定义在faster r-cnn中,最小化多任务损失,公式如下:

88cbefee679c43a7f62aa1714267e283.png

image.png

训练RPN


RPN可以通过反向传播和随机梯度下降(SGD)进行端到端的训练。我们遵循“以图像为中心”的采样策略来训练这个网络。每个小批都来自一个包含许多正面和负面示例anchor的图像。我们可以对所有anchor的损失函数进行优化,但这将偏向于负样本,因为它们占主导地位。相反,我们在一张图像中随机抽取256个锚点来计算一个小批量的损失函数,其中抽样的正锚点和负锚点的比例高达1:1。如果一个图像中有少于128个positive样本,我们用negative样本填充这个小批。

ROI Polling


ROI Pooling的作用是对不同大小的region proposal,从最后卷积层输出的feature map提取大小固定的feature map。因为全连接层的输入需要尺寸大小一样,所以不能直接将不同大小的region proposal映射到feature map作为输出,需要做尺寸变换。即将一个hw的region proposal分割成HW大小的网格,然后将这个region proposal映射到最后一个卷积层输出的feature map,最后计算每个网格里的最大值作为该网格的输出,所以不管ROI pooling之前的feature map大小是多少,ROI pooling后得到的feature map大小都是H*W。

下面是ROI polling layer层的一个经典动图:从图中可以直接看到ROI polling是怎样使输出都是固定的形状。

03452b0841966e7075f7fafd4d2d13ac.jpg

classification


Classification部分利用已经获得的proposal feature maps,通过full connect层与softmax计算每个proposal具体属于那个类别(如人,车,电视等),输出cls_prob概率向量;同时再次利用bounding box regression获得每个proposal的位置偏移量bbox_pred,用于回归更加精确的目标检测框。Classification部分网络结构如下图所示。

0444c7a8cb1b1590e3a9ed9b98921bcb.jpg

从RoI Pooling获取到7x7=49大小的proposal feature maps后,送入后续网络,可以看到做了如下2件事:

1、通过全连接和softmax对proposals进行分类,这实际上已经是识别的范畴了

2、再次对proposals进行bounding box regression,获取更高精度的rect box

Faster RCNN训练


Faster R-CNN的训练,是在已经训练好的model(如VGG_CNN_M_1024,VGG,ZF)的基础上继续进行训练。实际中训练过程分为6个步骤:

  • 在已经训练好的model上,训练RPN网络,对应stage1_rpn_train.pt
  • 利用步骤1中训练好的RPN网络,收集proposals,对应rpn_test.pt
  • 第一次训练Fast RCNN网络,对应stage1_fast_rcnn_train.pt
  • 第二训练RPN网络,对应stage2_rpn_train.pt
  • 再次利用步骤4中训练好的RPN网络,收集proposals,对应rpn_test.pt
  • 第二次训练Fast RCNN网络,对应stage2_fast_rcnn_train.pt

下面是一张训练过程流程图:

ade0660079927c33110e1edd9c3775f1.png

Faster R-CNN在各项数据集上的表现


2af760eae89890fb17ddc75368d363ad.png

d167f67f8014e57daf92255650446643.png

d5b0639bc569170513d556900cf0ad61.png

开源代码


https://github.com/rbgirshick/py-faster-rcnn

相关文章
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
199 30
|
21天前
|
网络协议
TCP报文格式全解析:网络小白变高手的必读指南
本文深入解析TCP报文格式,涵盖源端口、目的端口、序号、确认序号、首部长度、标志字段、窗口大小、检验和、紧急指针及选项字段。每个字段的作用和意义详尽说明,帮助理解TCP协议如何确保可靠的数据传输,是互联网通信的基石。通过学习这些内容,读者可以更好地掌握TCP的工作原理及其在网络中的应用。
|
21天前
|
存储 监控 网络协议
一次读懂网络分层:应用层到物理层全解析
网络模型分为五层结构,从应用层到物理层逐层解析。应用层提供HTTP、SMTP、DNS等常见协议;传输层通过TCP和UDP确保数据可靠或高效传输;网络层利用IP和路由器实现跨网数据包路由;数据链路层通过MAC地址管理局域网设备;物理层负责比特流的物理传输。各层协同工作,使网络通信得以实现。
|
21天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
84 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。

推荐镜像

更多