【LSTM时序预测】基于EMD结合长短时记忆网络LSTM实现风速数据预测Matlab源码

简介: 【LSTM时序预测】基于EMD结合长短时记忆网络LSTM实现风速数据预测Matlab源码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

⛄ 部分代码

%EMD  computes Empirical Mode Decomposition

%这个是通过设定阈值来确定分解出的imf个数

%

%   Syntax

%

%

% IMF = EMD(X)

% IMF = EMD(X,...,'Option_name',Option_value,...)

% IMF = EMD(X,OPTS)

% [IMF,ORT,NB_ITERATIONS] = EMD(...)

%

%

%   Description

%

%

% IMF = EMD(X) where X is a real vector computes the Empirical Mode

% Decomposition [1] of X, resulting in a matrix IMF containing 1 IMF per row, the

% last one being the residue. The default stopping criterion is the one proposed

% in [2]:

%

%   at each point, mean_amplitude < THRESHOLD2*envelope_amplitude

%   &

%   mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE

%   &

%   |#zeros-#extrema|<=1

%

% where mean_amplitude = abs(envelope_max+envelope_min)/2

% and envelope_amplitude = abs(envelope_max-envelope_min)/2

%

% IMF = EMD(X) where X is a complex vector computes Bivariate Empirical Mode

% Decomposition [3] of X, resulting in a matrix IMF containing 1 IMF per row, the

% last one being the residue. The default stopping criterion is similar to the

% one proposed in [2]:

%

%   at each point, mean_amplitude < THRESHOLD2*envelope_amplitude

%   &

%   mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE

%

% where mean_amplitude and envelope_amplitude have definitions similar to the

% real case

%

% IMF = EMD(X,...,'Option_name',Option_value,...) sets options Option_name to

% the specified Option_value (see Options)

%

% IMF = EMD(X,OPTS) is equivalent to the above syntax provided OPTS is a struct

% object with field names corresponding to option names and field values being the

% associated values

%

% [IMF,ORT,NB_ITERATIONS] = EMD(...) returns an index of orthogonality

%                       ________

%         _  |IMF(i,:).*IMF(j,:)|

%   ORT = \ _____________________

%         /

%         ?       || X ||?%        i~=j

%

% and the number of iterations to extract each mode in NB_ITERATIONS

%

%

%   Options

%

%

%  stopping criterion options:

%

% STOP: vector of stopping parameters [THRESHOLD,THRESHOLD2,TOLERANCE]

% if the input vector's length is less than 3, only the first parameters are

% set, the remaining ones taking default values.

% default: [0.05,0.5,0.05]

%

% FIX (int): disable the default stopping criterion and do exactly <FIX>

% number of sifting iterations for each mode

%

% FIX_H (int): disable the default stopping criterion and do <FIX_H> sifting

% iterations with |#zeros-#extrema|<=1 to stop [4]

%

%  bivariate/complex EMD options:

%

% COMPLEX_VERSION: selects the algorithm used for complex EMD ([3])

% COMPLEX_VERSION = 1: "algorithm 1"

% COMPLEX_VERSION = 2: "algorithm 2" (default)

%

% NDIRS: number of directions in which envelopes are computed (default 4)

% rem: the actual number of directions (according to [3]) is 2*NDIRS

%

%  other options:

%

% T: sampling times (line vector) (default: 1:length(x))

%

% MAXITERATIONS: maximum number of sifting iterations for the computation of each

% mode (default: 2000)

%

% MAXMODES: maximum number of imfs extracted (default: Inf)

%

% DISPLAY: if equals to 1 shows sifting steps with pause

% if equals to 2 shows sifting steps without pause (movie style)

% rem: display is disabled when the input is complex

%

% INTERP: interpolation scheme: 'linear', 'cubic', 'pchip' or 'spline' (default)

% see interp1 documentation for details

%

% MASK: masking signal used to improve the decomposition according to [5]

%

%

%   Examples

%

%

%X = rand(1,512);

%

%IMF = emd(X);

%

%IMF = emd(X,'STOP',[0.1,0.5,0.05],'MAXITERATIONS',100);

%

%T=linspace(0,20,1e3);

%X = 2*exp(i*T)+exp(3*i*T)+.5*T;

%IMF = emd(X,'T',T);

%

%OPTIONS.DISLPAY = 1;

%OPTIONS.FIX = 10;

%OPTIONS.MAXMODES = 3;

%[IMF,ORT,NBITS] = emd(X,OPTIONS);

%

%

%   References

%

%

% [1] N. E. Huang et al., "The empirical mode decomposition and the

% Hilbert spectrum for non-linear and non stationary time series analysis",

% Proc. Royal Soc. London A, Vol. 454, pp. 903-995, 1998

%

% [2] G. Rilling, P. Flandrin and P. Gon鏰lves

% "On Empirical Mode Decomposition and its algorithms",

% IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing

% NSIP-03, Grado (I), June 2003

%

% [3] G. Rilling, P. Flandrin, P. Gon鏰lves and J. M. Lilly.,

% "Bivariate Empirical Mode Decomposition",

% Signal Processing Letters (submitted)

%

% [4] N. E. Huang et al., "A confidence limit for the Empirical Mode

% Decomposition and Hilbert spectral analysis",

% Proc. Royal Soc. London A, Vol. 459, pp. 2317-2345, 2003

%

% [5] R. Deering and J. F. Kaiser, "The use of a masking signal to improve

% empirical mode decomposition", ICASSP 2005

%

%

% See also

%  emd_visu (visualization),

%  emdc, emdc_fix (fast implementations of EMD),

%  cemdc, cemdc_fix, cemdc2, cemdc2_fix (fast implementations of bivariate EMD),

%  hhspectrum (Hilbert-Huang spectrum)

%

%

% G. Rilling, last modification: 3.2007

% gabriel.rilling@ens-lyon.fr



function [imf,ort,nbits] = emd(varargin)


[x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin{:});


if display_sifting

 fig_h = figure;

end



%main loop : requires at least 3 extrema to proceed

while (~stop_EMD(r,MODE_COMPLEX,ndirs) && (k < MAXMODES+1 || MAXMODES == 0) && ~any(mask))


 % current mode

 m = r;


 % mode at previous iteration

 mp = m;


 %computation of mean and stopping criterion

 if FIXE

   [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);

 elseif FIXE_H

   stop_count = 0;

   [stop_sift,moyenne] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);

 else

   [stop_sift,moyenne] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);

 end


 % in case the current mode is so small that machine precision can cause

 % spurious extrema to appear

 if (max(abs(m))) < (1e-10)*(max(abs(x)))

   if ~stop_sift

     warning('emd:warning','forced stop of EMD : too small amplitude')

   else

     disp('forced stop of EMD : too small amplitude')

   end

   break

 end



 % sifting loop

 while ~stop_sift && nbit<MAXITERATIONS

   if(~MODE_COMPLEX && nbit>MAXITERATIONS/5 && mod(nbit,floor(MAXITERATIONS/10))==0 && ~FIXE && nbit > 100)

     disp(['mode ',int2str(k),', iteration ',int2str(nbit)])

     if exist('s','var')

       disp(['stop parameter mean value : ',num2str(s)])

     end

     [im,iM] = extr(m);

     disp([int2str(sum(m(im) > 0)),' minima > 0; ',int2str(sum(m(iM) < 0)),' maxima < 0.'])

   end


   %sifting

   m = m - moyenne;


   %computation of mean and stopping criterion

   if FIXE

     [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);

   elseif FIXE_H

     [stop_sift,moyenne,stop_count] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);

   else

     [stop_sift,moyenne,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);

   end


   % display

   if display_sifting && ~MODE_COMPLEX

     NBSYM = 2;

     [indmin,indmax] = extr(mp);

     [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,mp,mp,NBSYM);

     envminp = interp1(tmin,mmin,t,INTERP);

     envmaxp = interp1(tmax,mmax,t,INTERP);

     envmoyp = (envminp+envmaxp)/2;

     if FIXE || FIXE_H

       display_emd_fixe(t,m,mp,r,envminp,envmaxp,envmoyp,nbit,k,display_sifting)

     else

       sxp=2*(abs(envmoyp))./(abs(envmaxp-envminp));

       sp = mean(sxp);

       display_emd(t,m,mp,r,envminp,envmaxp,envmoyp,s,sp,sxp,sdt,sd2t,nbit,k,display_sifting,stop_sift)

     end

   end


   mp = m;

   nbit=nbit+1;

   NbIt=NbIt+1;


   if(nbit==(MAXITERATIONS-1) && ~FIXE && nbit > 100)

     if exist('s','var')

       warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'. stop parameter mean value : ',num2str(s)])

     else

       warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'.'])

     end

   end


 end % sifting loop

 imf(k,:) = m;

 if display_sifting

   disp(['mode ',int2str(k),' stored'])

 end

 nbits(k) = nbit;

 k = k+1;



 r = r - m;

 nbit=0;



end %main loop


if any(r) && ~any(mask)

 imf(k,:) = r;

end


ort = io(x,imf);


if display_sifting

 close

end

end


%---------------------------------------------------------------------------------------------------

% tests if there are enough (3) extrema to continue the decomposition

function stop = stop_EMD(r,MODE_COMPLEX,ndirs)

if MODE_COMPLEX

 for k = 1:ndirs

   phi = (k-1)*pi/ndirs;

   [indmin,indmax] = extr(real(exp(i*phi)*r));

   ner(k) = length(indmin) + length(indmax);

 end

 stop = any(ner < 3);

else

 [indmin,indmax] = extr(r);

 ner = length(indmin) + length(indmax);

 stop = ner < 3;

end

end


%---------------------------------------------------------------------------------------------------

% computes the mean of the envelopes and the mode amplitude estimate

function [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs)

NBSYM = 2;

if MODE_COMPLEX

 switch MODE_COMPLEX

   case 1

     for k = 1:ndirs

       phi = (k-1)*pi/ndirs;

       y = real(exp(-i*phi)*m);

       [indmin,indmax,indzer] = extr(y);

       nem(k) = length(indmin)+length(indmax);

       nzm(k) = length(indzer);

       [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,m,NBSYM);

       envmin(k,:) = interp1(tmin,zmin,t,INTERP);

       envmax(k,:) = interp1(tmax,zmax,t,INTERP);

     end

     envmoy = mean((envmin+envmax)/2,1);

     if nargout > 3

       amp = mean(abs(envmax-envmin),1)/2;

     end

   case 2

     for k = 1:ndirs

       phi = (k-1)*pi/ndirs;

       y = real(exp(-i*phi)*m);

       [indmin,indmax,indzer] = extr(y);

       nem(k) = length(indmin)+length(indmax);

       nzm(k) = length(indzer);

       [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,y,NBSYM);

       envmin(k,:) = exp(i*phi)*interp1(tmin,zmin,t,INTERP);

       envmax(k,:) = exp(i*phi)*interp1(tmax,zmax,t,INTERP);

     end

     envmoy = mean((envmin+envmax),1);

     if nargout > 3

       amp = mean(abs(envmax-envmin),1)/2;

     end

 end

else

 [indmin,indmax,indzer] = extr(m);

 nem = length(indmin)+length(indmax);

 nzm = length(indzer);

 [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,m,m,NBSYM);

 envmin = interp1(tmin,mmin,t,INTERP);

 envmax = interp1(tmax,mmax,t,INTERP);

 envmoy = (envmin+envmax)/2;

 if nargout > 3

   amp = mean(abs(envmax-envmin),1)/2;

 end

end

end


%-------------------------------------------------------------------------------

% default stopping criterion

function [stop,envmoy,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs)

try

 [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);

 sx = abs(envmoy)./amp;

 s = mean(sx);

 stop = ~((mean(sx > sd) > tol | any(sx > sd2)) & (all(nem > 2)));

 if ~MODE_COMPLEX

   stop = stop && ~(abs(nzm-nem)>1);

 end

catch

 stop = 1;

 envmoy = zeros(1,length(m));

 s = NaN;

end

end


%-------------------------------------------------------------------------------

% stopping criterion corresponding to option FIX

function [stop,moyenne]= stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs)

try

 moyenne = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);

 stop = 0;

catch

 moyenne = zeros(1,length(m));

 stop = 1;

end

end


%-------------------------------------------------------------------------------

% stopping criterion corresponding to option FIX_H

function [stop,moyenne,stop_count]= stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs)

try

 [moyenne,nem,nzm] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);

 if (all(abs(nzm-nem)>1))

   stop = 0;

   stop_count = 0;

 else

   stop_count = stop_count+1;

   stop = (stop_count == FIXE_H);

 end

catch

 moyenne = zeros(1,length(m));

 stop = 1;

end

end


%-------------------------------------------------------------------------------

% displays the progression of the decomposition with the default stopping criterion

function display_emd(t,m,mp,r,envmin,envmax,envmoy,s,sb,sx,sdt,sd2t,nbit,k,display_sifting,stop_sift)

subplot(4,1,1)

plot(t,mp);hold on;

plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');

title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' before sifting']);

set(gca,'XTick',[])

hold  off

subplot(4,1,2)

plot(t,sx)

hold on

plot(t,sdt,'--r')

plot(t,sd2t,':k')

title('stop parameter')

set(gca,'XTick',[])

hold off

subplot(4,1,3)

plot(t,m)

title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' after sifting']);

set(gca,'XTick',[])

subplot(4,1,4);

plot(t,r-m)

title('residue');

disp(['stop parameter mean value : ',num2str(sb),' before sifting and ',num2str(s),' after'])

if stop_sift

 disp('last iteration for this mode')

end

if display_sifting == 2

 pause(0.01)

else

 pause

end

end


%---------------------------------------------------------------------------------------------------

% displays the progression of the decomposition with the FIX and FIX_H stopping criteria

function display_emd_fixe(t,m,mp,r,envmin,envmax,envmoy,nbit,k,display_sifting)

subplot(3,1,1)

plot(t,mp);hold on;

plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');

title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' before sifting']);

set(gca,'XTick',[])

hold  off

subplot(3,1,2)

plot(t,m)

title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' after sifting']);

set(gca,'XTick',[])

subplot(3,1,3);

plot(t,r-m)

title('residue');

if display_sifting == 2

 pause(0.01)

else

 pause

end

end


%---------------------------------------------------------------------------------------

% defines new extrema points to extend the interpolations at the edges of the

% signal (mainly mirror symmetry)

function [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,x,z,nbsym)


lx = length(x);


if (length(indmin) + length(indmax) < 3)

error('not enough extrema')

end


   % boundary conditions for interpolations :


if indmax(1) < indmin(1)

    if x(1) > x(indmin(1))

lmax = fliplr(indmax(2:min(end,nbsym+1)));

lmin = fliplr(indmin(1:min(end,nbsym)));

lsym = indmax(1);

else

lmax = fliplr(indmax(1:min(end,nbsym)));

lmin = [fliplr(indmin(1:min(end,nbsym-1))),1];

lsym = 1;

end

else


if x(1) < x(indmax(1))

lmax = fliplr(indmax(1:min(end,nbsym)));

lmin = fliplr(indmin(2:min(end,nbsym+1)));

lsym = indmin(1);

else

lmax = [fliplr(indmax(1:min(end,nbsym-1))),1];

lmin = fliplr(indmin(1:min(end,nbsym)));

lsym = 1;

end

end

   

if indmax(end) < indmin(end)

if x(end) < x(indmax(end))

rmax = fliplr(indmax(max(end-nbsym+1,1):end));

rmin = fliplr(indmin(max(end-nbsym,1):end-1));

rsym = indmin(end);

else

rmax = [lx,fliplr(indmax(max(end-nbsym+2,1):end))];

rmin = fliplr(indmin(max(end-nbsym+1,1):end));

rsym = lx;

end

else

if x(end) > x(indmin(end))

rmax = fliplr(indmax(max(end-nbsym,1):end-1));

rmin = fliplr(indmin(max(end-nbsym+1,1):end));

rsym = indmax(end);

else

rmax = fliplr(indmax(max(end-nbsym+1,1):end));

rmin = [lx,fliplr(indmin(max(end-nbsym+2,1):end))];

rsym = lx;

end

end

   

tlmin = 2*t(lsym)-t(lmin);

tlmax = 2*t(lsym)-t(lmax);

trmin = 2*t(rsym)-t(rmin);

trmax = 2*t(rsym)-t(rmax);

   

% in case symmetrized parts do not extend enough

if tlmin(1) > t(1) || tlmax(1) > t(1)

if lsym == indmax(1)

lmax = fliplr(indmax(1:min(end,nbsym)));

else

lmin = fliplr(indmin(1:min(end,nbsym)));

end

if lsym == 1

error('bug')

end

lsym = 1;

tlmin = 2*t(lsym)-t(lmin);

tlmax = 2*t(lsym)-t(lmax);

end  

   

if trmin(end) < t(lx) || trmax(end) < t(lx)

if rsym == indmax(end)

rmax = fliplr(indmax(max(end-nbsym+1,1):end));

else

rmin = fliplr(indmin(max(end-nbsym+1,1):end));

end

if rsym == lx

error('bug')

end

rsym = lx;

trmin = 2*t(rsym)-t(rmin);

trmax = 2*t(rsym)-t(rmax);

end

         

zlmax =z(lmax);

zlmin =z(lmin);

zrmax =z(rmax);

zrmin =z(rmin);

   

tmin = [tlmin t(indmin) trmin];

tmax = [tlmax t(indmax) trmax];

zmin = [zlmin z(indmin) zrmin];

zmax = [zlmax z(indmax) zrmax];

end

   

%---------------------------------------------------------------------------------------------------

%extracts the indices of extrema

function [indmin, indmax, indzer] = extr(x,t)


if(nargin==1)

 t=1:length(x);

end


m = length(x);


if nargout > 2

 x1=x(1:m-1);

 x2=x(2:m);

 indzer = find(x1.*x2<0);


 if any(x == 0)

   iz = find( x==0 );

   indz = [];

   if any(diff(iz)==1)

     zer = x == 0;

     dz = diff([0 zer 0]);

     debz = find(dz == 1);

     finz = find(dz == -1)-1;

     indz = round((debz+finz)/2);

   else

     indz = iz;

   end

   indzer = sort([indzer indz]);

 end

end


d = diff(x);


n = length(d);

d1 = d(1:n-1);

d2 = d(2:n);

indmin = find(d1.*d2<0 & d1<0)+1;

indmax = find(d1.*d2<0 & d1>0)+1;



% when two or more successive points have the same value we consider only one extremum in the middle of the constant area

% (only works if the signal is uniformly sampled)


if any(d==0)


 imax = [];

 imin = [];


 bad = (d==0);

 dd = diff([0 bad 0]);

 debs = find(dd == 1);

 fins = find(dd == -1);

 if debs(1) == 1

   if length(debs) > 1

     debs = debs(2:end);

     fins = fins(2:end);

   else

     debs = [];

     fins = [];

   end

 end

 if length(debs) > 0

   if fins(end) == m

     if length(debs) > 1

       debs = debs(1:(end-1));

       fins = fins(1:(end-1));


     else

       debs = [];

       fins = [];

     end

   end

 end

 lc = length(debs);

 if lc > 0

   for k = 1:lc

     if d(debs(k)-1) > 0

       if d(fins(k)) < 0

         imax = [imax round((fins(k)+debs(k))/2)];

       end

     else

       if d(fins(k)) > 0

         imin = [imin round((fins(k)+debs(k))/2)];

       end

     end

   end

 end


 if length(imax) > 0

   indmax = sort([indmax imax]);

 end


 if length(imin) > 0

   indmin = sort([indmin imin]);

 end


end

end


%---------------------------------------------------------------------------------------------------


function ort = io(x,imf)

% ort = IO(x,imf) computes the index of orthogonality

%

% inputs : - x    : analyzed signal

%          - imf  : empirical mode decomposition


n = size(imf,1);


s = 0;


for i = 1:n

 for j =1:n

   if i~=j

     s = s + abs(sum(imf(i,:).*conj(imf(j,:)))/sum(x.^2));

   end

 end

end


ort = 0.5*s;

end

%---------------------------------------------------------------------------------------------------


function [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin)


x = varargin{1};

if nargin == 2

 if isstruct(varargin{2})

   inopts = varargin{2};

 else

   error('when using 2 arguments the first one is the analyzed signal X and the second one is a struct object describing the options')

 end

elseif nargin > 2

 try

   inopts = struct(varargin{2:end});

 catch

   error('bad argument syntax')

 end

end


% default for stopping

defstop = [0.05,0.5,0.05];


opt_fields = {'t','stop','display','maxiterations','fix','maxmodes','interp','fix_h','mask','ndirs','complex_version'};


defopts.stop = defstop;

defopts.display = 0;

defopts.t = 1:max(size(x));

defopts.maxiterations = 2000;

defopts.fix = 0;

defopts.maxmodes = 0;

defopts.interp = 'spline';

defopts.fix_h = 0;

defopts.mask = 0;

defopts.ndirs = 4;

defopts.complex_version = 2;


opts = defopts;




if(nargin==1)

 inopts = defopts;

elseif nargin == 0

 error('not enough arguments')

end



names = fieldnames(inopts);

for nom = names'

 if ~any(strcmpi(char(nom), opt_fields))

   error(['bad option field name: ',char(nom)])

 end

 if ~isempty(eval(['inopts.',char(nom)])) % empty values are discarded

   eval(['opts.',lower(char(nom)),' = inopts.',char(nom),';'])

 end

end


t = opts.t;

stop = opts.stop;

display_sifting = opts.display;

MAXITERATIONS = opts.maxiterations;

FIXE = opts.fix;

MAXMODES = opts.maxmodes;

INTERP = opts.interp;

FIXE_H = opts.fix_h;

mask = opts.mask;

ndirs = opts.ndirs;

complex_version = opts.complex_version;


if ~isvector(x)

 error('X must have only one row or one column')

end


if size(x,1) > 1

 x = x.';

end


if ~isvector(t)

 error('option field T must have only one row or one column')

end


if ~isreal(t)

 error('time instants T must be a real vector')

end


if size(t,1) > 1

 t = t';

end


if (length(t)~=length(x))

 error('X and option field T must have the same length')

end


if ~isvector(stop) || length(stop) > 3

 error('option field STOP must have only one row or one column of max three elements')

end


if ~all(isfinite(x))

 error('data elements must be finite')

end


if size(stop,1) > 1

 stop = stop';

end


L = length(stop);

if L < 3

 stop(3)=defstop(3);

end


if L < 2

 stop(2)=defstop(2);

end



if ~ischar(INTERP) || ~any(strcmpi(INTERP,{'linear','cubic','spline'}))

 error('INTERP field must be ''linear'', ''cubic'', ''pchip'' or ''spline''')

end


%special procedure when a masking signal is specified

if any(mask)

 if ~isvector(mask) || length(mask) ~= length(x)

   error('masking signal must have the same dimension as the analyzed signal X')

 end


 if size(mask,1) > 1

   mask = mask.';

 end

 opts.mask = 0;

 imf1 = emd(x+mask,opts);

 imf2 = emd(x-mask,opts);

 if size(imf1,1) ~= size(imf2,1)

   warning('emd:warning',['the two sets of IMFs have different sizes: ',int2str(size(imf1,1)),' and ',int2str(size(imf2,1)),' IMFs.'])

 end

 S1 = size(imf1,1);

 S2 = size(imf2,1);

 if S1 ~= S2

   if S1 < S2

     tmp = imf1;

     imf1 = imf2;

     imf2 = tmp;

   end

   imf2(max(S1,S2),1) = 0;

 end

 imf = (imf1+imf2)/2;


end



sd = stop(1);

sd2 = stop(2);

tol = stop(3);


lx = length(x);


sdt = sd*ones(1,lx);

sd2t = sd2*ones(1,lx);


if FIXE

 MAXITERATIONS = FIXE;

 if FIXE_H

   error('cannot use both ''FIX'' and ''FIX_H'' modes')

 end

end


MODE_COMPLEX = ~isreal(x)*complex_version;

if MODE_COMPLEX && complex_version ~= 1 && complex_version ~= 2

 error('COMPLEX_VERSION parameter must equal 1 or 2')

end



% number of extrema and zero-crossings in residual

ner = lx;

nzr = lx;


r = x;


if ~any(mask) % if a masking signal is specified "imf" already exists at this stage

 imf = [];

end

k = 1;


% iterations counter for extraction of 1 mode

nbit=0;


% total iterations counter

NbIt=0;

end

%---------------------------------------------------------------------------------------------------

⛄ 运行结果

⛄ 参考文献

[1]王亦斌、孙涛、梁雪春、谢海洋. “基于EMD-LSTM模型的河水量水位预测。” 水利水电科技进展 40.6(2020):8.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
30天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
35 2
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
195 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
126 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章