深度学习基础:为什么神经网络的感知机中的神经元需要偏置项?

简介: 深度学习基础:为什么神经网络的感知机中的神经元需要偏置项?

神经元中不添加偏置项可以吗?答案是,不可以

image.png

每个人都知道神经网络中的偏置(bias)是什么,而且从人类实现第一个感知器开始,每个人都知道神经元需要添加偏置项。但你是否考虑过我们为什么要使用偏置项呢?就我而言,直到不久前我才弄清楚这个问题。当时我和一个本科生讨论了一些神经网络模型,但不知何故她把“偏置输入”(bias input)和“统计基差”( statistical bias)搞混了。对我来说,向她解释这些概念当然很容易,但我却很难进一步地告诉她我们为什么要使用偏置项。过了一段时间,我决定尝试写代码来研究这一问题。

让我们先从一些简单的概念开始。

感知器是多层感知器(MLP)和人工神经网络的前身。众所周知,感知器是一种用于监督学习的仿生算法。它本质上是一个线性分类器,如图所示:

一个简单的感知器示意图

image.png

下面让我们考察一下这个模型的数学方程:

在这里,f(x)代表激活函数(通常是一个阶跃函数)。b是偏置项, p和w分别是输入和权重。

你可能会注意到它与线性函数的标准形式是相似的。如果我们不适用激活函数,或将激活函数替换为恒等映射,这些公式将是相同的(在这里为了方便描述,我们只考虑单一输入):

在这里偏置项的权重是1

image.png

比较这两个公式,很明显我们的偏置项就对应了线性函数中的b。现在的问题就转化为,线性函数中的b为什么那么重要?如果你过去几年没有上过任何线性代数课程(就像我一样),可能对一些概念不够了解。但是下面的内容是很容易理解的:

image.png

我们很容易就注意到,当b=0时,函数总是通过原点[0,0]。当我们保持a不变的情况下引入b时,新的函数总是相互平行的。那么,我们能从中得到什么信息呢?

我们可以说,系数a决定了函数的角度,而分量b决定了函数与x轴的交点。

此时我想你已经注意到了一些问题,对吧?如果没有b,函数将会失去很多灵活性。只不过对一些分布进行分类时偏置项可能有用,但不是对所有情况都有用。怎样测试它的实际效果呢?让我们使用一个简单的例子:OR函数。让我们先来看看它的分布:

绘制在笛卡尔坐标系中的OR函数:

image.png

我想你已经想明白了这个问题。图中两个点([0,0]和[1,0])是两个不同的类,但任何一条过[0,0]的直线都没有办法将这两个点分开。那么感知机如何对它分类呢?有偏置项和无偏置项的结果分别是怎样的呢?让我们通过编程,看看将会发生什么!下面是用Python实现的感知器神经元:

classPerceptron():def__init__(self, n_input, alpha=0.01, has_bias=True):
    self.has_bias = has_bias
    self.bias_weight = random.uniform(-1,1)
    self.alpha = alpha
    self.weights = []
    for i in range(n_input):
        self.weights.append(random.uniform(-1,1))defclassify(self, input):
    summation = 0if(self.has_bias):
        summation += self.bias_weight * 1for i in range(len(self.weights)):
        summation += self.weights[i] * input[i]
    return self.activation(summation)defactivation(self, value):if(value < 0):
        return0else:
        return1deftrain(self, input, target):
    guess = self.classify(input)
    error = target - guess
    if(self.has_bias):
        self.bias_weight += 1 * error * self.alpha
    for i in range(len(self.weights)):
        self.weights[i] += input[i] * error * self.alpha

没有偏置项的感知器

image.png

首先,让我们训练无偏置项的感知器。我们知道,分类器(在本例中是我们的函数)总是通过[0,0]的。正如我们之前所说的那样,分类器无法分开这两类。在这种情况下尽管一直在向分离平面逼近,但它还是不能将[0,0]和[1,0]分开,

有偏置项的感知器

image.png

现在我们来看一下有偏置项的感知器。首先,注意分类器的灵活性。如前所述,在这种情况下感知器具有更大的灵活性。此外我们可以注意到,它正在寻找与上一个示例相同的判别平面,但是现在它能够找到分离数据的最佳位置。

所以,偏置项的重要性现在已经很清楚了。我知道你现在可能在思考激活函数,我们在python例子中使用了一个阶跃函数作为激活函数,如果我们使用sigmoid作为激活函数,它的效果可能会更好?相信我:不会的。让我们看看当我们将sigmoid函数作为线性函数的激活函数(σ(f (x)))会发生什么:

image.png

你是否注意到这里的例子和线性函数的例子很相似?sigmoid函数虽然改变了输出的形状,但是我们仍然遇到同样的问题:如果没有偏置项,所有的函数都会经过原点。当我们试图用曲线分离OR函数中时,它仍然得不到满意的结果。如果您想尝试一下,看看它是如何工作的,您只需要对python代码做一些小小的修改。

我真诚地感谢你对这个主题感兴趣。如果你有任何建议、意见,或者只是想和我打个招呼,请给我留言!我将很乐意和你讨论这个问题。

目录
相关文章
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
31 1
|
10天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
22 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
2天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第31天】本文旨在通过浅显易懂的语言和直观的比喻,为初学者揭开深度学习中卷积神经网络(CNN)的神秘面纱。我们将从CNN的基本原理出发,逐步深入到其在图像识别领域的实际应用,并通过一个简单的代码示例,展示如何利用CNN进行图像分类。无论你是编程新手还是深度学习的初学者,这篇文章都将为你打开一扇通往人工智能世界的大门。
|
4天前
|
机器学习/深度学习 人工智能 算法
深度学习中的对抗性生成网络
本文将深入探讨深度学习中的对抗性生成网络,通过通俗易懂的语言解释其工作原理及应用。我们将从基本原理入手,逐步解析对抗性生成网络的组成部分和训练过程,并结合具体实例展示其在图像生成和风格转换等领域的应用。同时,文章也将讨论在实际应用中可能面临的挑战及未来发展方向。
|
6天前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
27 5
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络背后的原理与实践
【9月更文挑战第29天】本文将带你深入理解深度学习的核心概念,从基础理论到实际应用,逐步揭示其神秘面纱。我们将探讨神经网络的工作原理,并通过实际代码示例,展示如何构建和训练一个简单的深度学习模型。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供宝贵的知识和技能。
13 2
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与神经网络:探索复杂数据的表示
【9月更文挑战第26天】深度学习作为人工智能领域的明珠,通过神经网络自动从大数据中提取高级特征,实现分类、回归等任务。本文介绍深度学习的基础、张量表示、非线性变换、反向传播及梯度下降算法,并探讨其在计算机视觉、自然语言处理等领域的应用与挑战。未来,深度学习将更加智能化,揭示数据背后的奥秘。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature
【9月更文挑战第24天】近年来,深度学习在人工智能领域取得巨大成功,但在连续学习任务中面临“损失可塑性”问题,尤其在深度强化学习中更为突出。加拿大阿尔伯塔大学的研究人员提出了一种名为“持续反向传播”的算法,通过选择性地重新初始化网络中的低效用单元,保持模型的可塑性。该算法通过评估每个连接和权重的贡献效用来决定是否重新初始化隐藏单元,并引入成熟度阈值保护新单元。实验表明,该算法能显著提升连续学习任务的表现,尤其在深度强化学习领域效果明显。然而,算法也存在计算复杂性和成熟度阈值设置等问题。
22 2
|
9天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
29 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
下一篇
无影云桌面