探索未来的视觉革命:卷积神经网络的崭新时代(一)

简介: 探索未来的视觉革命:卷积神经网络的崭新时代(一)

🍋引言

当谈到深度学习和计算机视觉时,卷积神经网络(Convolutional Neural Networks,CNNs)一直是热门话题。CNNs是一类专门设计用于处理图像数据的深度学习神经网络,已经在许多领域取得了重大成功,如图像分类、目标检测、人脸识别和自动驾驶。本文将探讨卷积神经网络的基本原理、应用领域以及一些最新趋势。

🍋卷积神经网络的基本原理

  • 卷积层(Convolutional Layer):卷积层是CNN的核心组件,用于提取图像的特征。它通过在输入图像上滑动卷积核,对每个位置进行卷积运算,从而生成特征图。这些特征图捕获了不同位置的局部特征。
  • 池化层(Pooling Layer):池化层用于减小特征图的尺寸,减少计算负担,同时保留最重要的信息。常见的池化操作包括最大池化和平均池化。
  • 全连接层(Fully Connected Layer):全连接层将卷积层和池化层的输出连接在一起,用于执行最终的分类或回归任务。这一层通常包括多个神经元,每个神经元对应一个类别或回归目标。
  • 激活函数(Activation Function):在卷积层和全连接层之间,通常会应用非线性激活函数,如ReLU(Rectified Linear Unit),以引入非线性特性,增强网络的表达能力。

🍋全连接网络 VS 卷积神经网络

在开始学习卷积神经网络前,我们先来回顾一下全连接网络,正如名字,全连接代表了每一层的属于都对后面的输出有影响,当然它们之间是相互影响关联的,下图可以看出,后面会展示卷积神经网络可以拿来对比一下。

它们之间的差异主要体现在结构性的差异上

  • 全连接网络:在全连接网络中,每个神经元与前一层中的每个神经元相连接。这意味着每个神经元都受到前一层中所有神经元的影响,导致参数数量迅速增加。
  • 卷积神经网络(CNN):CNN使用卷积层,其中神经元仅与输入数据的局部区域相连接,而不是与整个输入相连接。这减少了参数数量,使CNN在处理图像等大型数据时更加高效。

🍋卷积神经网络

下图清楚的展示了一个卷积网络,大概的流程是

  • input的1×28×28经过卷积层5×5的卷积
  • 变为4×24×24的Features maps
  • 再经过2×2的池化层变为4×12×12的Features maps
  • 再经过5×5的卷积层变为8×8×8的Features maps
  • 最后经过2×2的池化层,变为8×4×4的Features maps
  • 这个部分是特征提取。经过特征提取后,进行分类器部分,这里主要是通过全连接将其转化为一维向量,最后再变为十维的输出

    这里再进行一些必要的说明,全连接会导致原有的空间结构丧失,卷积神经网络可以保留原有的空间结构
    池化的目的是减小尺寸减低计算复杂度,降低过拟合的风险,保留关键信息(常用的Maxpooling就是取局部最大)
    convolution+subsampling=Feature Extraction

这里我们进行一下简单的扩展(栅格图像和矢量图像

栅格图像是以像素为基础的,适用于复杂的图像和照片,但受限于分辨率和放大时的失真。矢量图像是基于数学形状的,适用于图标、标志和需要无损缩放和编辑的应用。

我们使用卷积神经网络处理的图像通常情况是栅格图像

这些栅格图像由像素组成,每个像素都有自己的颜色信息,通常表示为红、绿、蓝(RGB)或灰度值。CNN的卷积层通过在图像上滑动卷积核来识别特征,这些卷积核与图像的局部区域相连接,从而有效地捕获图像中的各种特征,如边缘、纹理和形状。

🍋卷积层

下图展示了卷积层的基本元素,由input Channel、width、height、output Channel组成,这里取其中的一个Patch,然后将其在进行上下左右的平移。

或许大家对上图不是很清楚,那么我们来看看下图,或许可以更直观的理解卷积运算

这里是input 是1×5×5,经过1×3×3的卷积核运算,变为1×3×3的output

注意:这里input的Channel与卷积核的Channel的一致的,最终就会得到如下的output

那么如果是Channel=3呢,会有什么变化,卷积核与output会产生什么变化,下图清楚的展示流程

如果堆叠起来,那会变为下图所示

那么我们再扩展一下,如果有n个Input Channel、m个Output Channel

注意:这里input Channel的值与卷积核的Channel相同,Output Channel与卷积核的数量相同


使用Pytorch进行演示的话

import torch
in_channels, out_channels= 5, 10
width, height = 100, 100
kernel_size = 3
batch_size = 1
input = torch.randn(batch_size,
                    in_channels,
                    width,
                    height)
conv_layer = torch.nn.Conv2d(in_channels,
                            out_channels,
                            kernel_size=kernel_size)
output = conv_layer(input)
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

运行代码如下

接下来再简单介绍一下两个Conv2d的两个可选参数

🍋padding

当padding=1代表为input做一层0填充这样的Output就会和input拥有相同的尺寸了

import torch
input = [3,4,6,5,7,
        2,4,6,8,2,
        1,6,7,8,4,
        9,7,4,6,2,
        3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input) 
print(output)

运行结果如下

🍋stride

这个参数是步长的意思,可以减少特征图的尺寸

import torch
input = [3,4,6,5,7,
        2,4,6,8,2,
        1,6,7,8,4,
        9,7,4,6,2,
        3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)

运行结果如下=

🍋池化层

池化层上面已经简单介绍了,这不就不一一赘述

import torch
input = [3,4,6,5,
        2,4,6,8,
        1,6,7,8,
        9,7,4,6,
]
input = torch.Tensor(input).view(1, 1, 4, 4)
maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)
output = maxpooling_layer(input)
print(output)

运行结果如下

🍋完整代码

下图可以清楚的展示了一整个卷积流程

具体代码如下

import torch
import torch.nn.functional as F
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        batch_size = x.size(0)
        x = self.pooling(F.relu(self.conv1(x)))
        x = self.pooling(F.relu(self.conv2(x)))
        x = x.view(batch_size, -1) # flatten
        x = self.fc(x)
        return x
model = Net()

如果有GPU的话,我们可以使用GPU计算

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
model.to(device)

训练和测试代码如下

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
            running_loss = 0.0
 def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            inputs, target = data
            inputs, target = inputs.to(device), target.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, dim=1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
        print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))

🍋卷积神经网络的应用领域

  • 图像分类:CNNs可以识别图像中的对象、动物、人物等,因此被广泛用于图像分类任务。有名的例子包括ImageNet图像分类竞赛中的深度卷积网络。
  • 目标检测:CNNs可以帮助检测图像中的物体,并确定它们的位置。这在自动驾驶、视频监控和医学图像分析中都有重要应用。
  • 人脸识别:CNNs可以识别和验证人脸,这在手机解锁、社交媒体标签和安全监控中都有广泛应用。
  • 自然语言处理:CNNs不仅仅用于图像处理,还可以用于文本分类和自然语言处理任务,如情感分析和垃圾邮件检测。
  • 医学图像分析:CNNs有助于分析医学影像,如X光片、MRI扫描和CT扫描,用于诊断和疾病检测。

🍋总结

卷积神经网络是深度学习的关键技术之一,它在图像处理和其他领域中取得了巨大的成功。随着技术的不断发展,我们可以期待看到更多令人兴奋的进展和应用。如果你对这个领域感兴趣,可以看看刘二大人讲的

本文根据b站刘二大人《PyTorch深度学习实践》完结合集学习后加以整理,文中图文均不属于个人。

挑战与创造都是很痛苦的,但是很充实。

相关文章
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
17天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
18 2
|
17天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
24 1
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
10天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
16天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
18天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。