探索未来的视觉革命:卷积神经网络的崭新时代(一)

简介: 探索未来的视觉革命:卷积神经网络的崭新时代(一)

🍋引言

当谈到深度学习和计算机视觉时,卷积神经网络(Convolutional Neural Networks,CNNs)一直是热门话题。CNNs是一类专门设计用于处理图像数据的深度学习神经网络,已经在许多领域取得了重大成功,如图像分类、目标检测、人脸识别和自动驾驶。本文将探讨卷积神经网络的基本原理、应用领域以及一些最新趋势。

🍋卷积神经网络的基本原理

  • 卷积层(Convolutional Layer):卷积层是CNN的核心组件,用于提取图像的特征。它通过在输入图像上滑动卷积核,对每个位置进行卷积运算,从而生成特征图。这些特征图捕获了不同位置的局部特征。
  • 池化层(Pooling Layer):池化层用于减小特征图的尺寸,减少计算负担,同时保留最重要的信息。常见的池化操作包括最大池化和平均池化。
  • 全连接层(Fully Connected Layer):全连接层将卷积层和池化层的输出连接在一起,用于执行最终的分类或回归任务。这一层通常包括多个神经元,每个神经元对应一个类别或回归目标。
  • 激活函数(Activation Function):在卷积层和全连接层之间,通常会应用非线性激活函数,如ReLU(Rectified Linear Unit),以引入非线性特性,增强网络的表达能力。

🍋全连接网络 VS 卷积神经网络

在开始学习卷积神经网络前,我们先来回顾一下全连接网络,正如名字,全连接代表了每一层的属于都对后面的输出有影响,当然它们之间是相互影响关联的,下图可以看出,后面会展示卷积神经网络可以拿来对比一下。

它们之间的差异主要体现在结构性的差异上

  • 全连接网络:在全连接网络中,每个神经元与前一层中的每个神经元相连接。这意味着每个神经元都受到前一层中所有神经元的影响,导致参数数量迅速增加。
  • 卷积神经网络(CNN):CNN使用卷积层,其中神经元仅与输入数据的局部区域相连接,而不是与整个输入相连接。这减少了参数数量,使CNN在处理图像等大型数据时更加高效。

🍋卷积神经网络

下图清楚的展示了一个卷积网络,大概的流程是

  • input的1×28×28经过卷积层5×5的卷积
  • 变为4×24×24的Features maps
  • 再经过2×2的池化层变为4×12×12的Features maps
  • 再经过5×5的卷积层变为8×8×8的Features maps
  • 最后经过2×2的池化层,变为8×4×4的Features maps
  • 这个部分是特征提取。经过特征提取后,进行分类器部分,这里主要是通过全连接将其转化为一维向量,最后再变为十维的输出

    这里再进行一些必要的说明,全连接会导致原有的空间结构丧失,卷积神经网络可以保留原有的空间结构
    池化的目的是减小尺寸减低计算复杂度,降低过拟合的风险,保留关键信息(常用的Maxpooling就是取局部最大)
    convolution+subsampling=Feature Extraction

这里我们进行一下简单的扩展(栅格图像和矢量图像

栅格图像是以像素为基础的,适用于复杂的图像和照片,但受限于分辨率和放大时的失真。矢量图像是基于数学形状的,适用于图标、标志和需要无损缩放和编辑的应用。

我们使用卷积神经网络处理的图像通常情况是栅格图像

这些栅格图像由像素组成,每个像素都有自己的颜色信息,通常表示为红、绿、蓝(RGB)或灰度值。CNN的卷积层通过在图像上滑动卷积核来识别特征,这些卷积核与图像的局部区域相连接,从而有效地捕获图像中的各种特征,如边缘、纹理和形状。

🍋卷积层

下图展示了卷积层的基本元素,由input Channel、width、height、output Channel组成,这里取其中的一个Patch,然后将其在进行上下左右的平移。

或许大家对上图不是很清楚,那么我们来看看下图,或许可以更直观的理解卷积运算

这里是input 是1×5×5,经过1×3×3的卷积核运算,变为1×3×3的output

注意:这里input的Channel与卷积核的Channel的一致的,最终就会得到如下的output

那么如果是Channel=3呢,会有什么变化,卷积核与output会产生什么变化,下图清楚的展示流程

如果堆叠起来,那会变为下图所示

那么我们再扩展一下,如果有n个Input Channel、m个Output Channel

注意:这里input Channel的值与卷积核的Channel相同,Output Channel与卷积核的数量相同


使用Pytorch进行演示的话

import torch
in_channels, out_channels= 5, 10
width, height = 100, 100
kernel_size = 3
batch_size = 1
input = torch.randn(batch_size,
                    in_channels,
                    width,
                    height)
conv_layer = torch.nn.Conv2d(in_channels,
                            out_channels,
                            kernel_size=kernel_size)
output = conv_layer(input)
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

运行代码如下

接下来再简单介绍一下两个Conv2d的两个可选参数

🍋padding

当padding=1代表为input做一层0填充这样的Output就会和input拥有相同的尺寸了

import torch
input = [3,4,6,5,7,
        2,4,6,8,2,
        1,6,7,8,4,
        9,7,4,6,2,
        3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input) 
print(output)

运行结果如下

🍋stride

这个参数是步长的意思,可以减少特征图的尺寸

import torch
input = [3,4,6,5,7,
        2,4,6,8,2,
        1,6,7,8,4,
        9,7,4,6,2,
        3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)

运行结果如下=

🍋池化层

池化层上面已经简单介绍了,这不就不一一赘述

import torch
input = [3,4,6,5,
        2,4,6,8,
        1,6,7,8,
        9,7,4,6,
]
input = torch.Tensor(input).view(1, 1, 4, 4)
maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)
output = maxpooling_layer(input)
print(output)

运行结果如下

🍋完整代码

下图可以清楚的展示了一整个卷积流程

具体代码如下

import torch
import torch.nn.functional as F
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        batch_size = x.size(0)
        x = self.pooling(F.relu(self.conv1(x)))
        x = self.pooling(F.relu(self.conv2(x)))
        x = x.view(batch_size, -1) # flatten
        x = self.fc(x)
        return x
model = Net()

如果有GPU的话,我们可以使用GPU计算

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
model.to(device)

训练和测试代码如下

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
            running_loss = 0.0
 def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            inputs, target = data
            inputs, target = inputs.to(device), target.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, dim=1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
        print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))

🍋卷积神经网络的应用领域

  • 图像分类:CNNs可以识别图像中的对象、动物、人物等,因此被广泛用于图像分类任务。有名的例子包括ImageNet图像分类竞赛中的深度卷积网络。
  • 目标检测:CNNs可以帮助检测图像中的物体,并确定它们的位置。这在自动驾驶、视频监控和医学图像分析中都有重要应用。
  • 人脸识别:CNNs可以识别和验证人脸,这在手机解锁、社交媒体标签和安全监控中都有广泛应用。
  • 自然语言处理:CNNs不仅仅用于图像处理,还可以用于文本分类和自然语言处理任务,如情感分析和垃圾邮件检测。
  • 医学图像分析:CNNs有助于分析医学影像,如X光片、MRI扫描和CT扫描,用于诊断和疾病检测。

🍋总结

卷积神经网络是深度学习的关键技术之一,它在图像处理和其他领域中取得了巨大的成功。随着技术的不断发展,我们可以期待看到更多令人兴奋的进展和应用。如果你对这个领域感兴趣,可以看看刘二大人讲的

本文根据b站刘二大人《PyTorch深度学习实践》完结合集学习后加以整理,文中图文均不属于个人。

挑战与创造都是很痛苦的,但是很充实。

相关文章
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
1月前
|
机器学习/深度学习 人工智能 算法
深度解析:基于卷积神经网络的宠物识别
宠物识别技术随着饲养规模扩大而兴起,传统手段存在局限性,基于卷积神经网络的宠物识别技术应运而生。快瞳AI通过优化MobileNet-SSD架构、多尺度特征融合及动态网络剪枝等技术,实现高效精准识别。其在智能家居、宠物医疗和防走失领域展现广泛应用前景,为宠物管理带来智能化解决方案,推动行业迈向新高度。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
8天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
3月前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
217 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
6月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
158 17

热门文章

最新文章