探索未来的视觉革命:卷积神经网络的崭新时代(一)

简介: 探索未来的视觉革命:卷积神经网络的崭新时代(一)

🍋引言

当谈到深度学习和计算机视觉时,卷积神经网络(Convolutional Neural Networks,CNNs)一直是热门话题。CNNs是一类专门设计用于处理图像数据的深度学习神经网络,已经在许多领域取得了重大成功,如图像分类、目标检测、人脸识别和自动驾驶。本文将探讨卷积神经网络的基本原理、应用领域以及一些最新趋势。

🍋卷积神经网络的基本原理

  • 卷积层(Convolutional Layer):卷积层是CNN的核心组件,用于提取图像的特征。它通过在输入图像上滑动卷积核,对每个位置进行卷积运算,从而生成特征图。这些特征图捕获了不同位置的局部特征。
  • 池化层(Pooling Layer):池化层用于减小特征图的尺寸,减少计算负担,同时保留最重要的信息。常见的池化操作包括最大池化和平均池化。
  • 全连接层(Fully Connected Layer):全连接层将卷积层和池化层的输出连接在一起,用于执行最终的分类或回归任务。这一层通常包括多个神经元,每个神经元对应一个类别或回归目标。
  • 激活函数(Activation Function):在卷积层和全连接层之间,通常会应用非线性激活函数,如ReLU(Rectified Linear Unit),以引入非线性特性,增强网络的表达能力。

🍋全连接网络 VS 卷积神经网络

在开始学习卷积神经网络前,我们先来回顾一下全连接网络,正如名字,全连接代表了每一层的属于都对后面的输出有影响,当然它们之间是相互影响关联的,下图可以看出,后面会展示卷积神经网络可以拿来对比一下。

它们之间的差异主要体现在结构性的差异上

  • 全连接网络:在全连接网络中,每个神经元与前一层中的每个神经元相连接。这意味着每个神经元都受到前一层中所有神经元的影响,导致参数数量迅速增加。
  • 卷积神经网络(CNN):CNN使用卷积层,其中神经元仅与输入数据的局部区域相连接,而不是与整个输入相连接。这减少了参数数量,使CNN在处理图像等大型数据时更加高效。

🍋卷积神经网络

下图清楚的展示了一个卷积网络,大概的流程是

  • input的1×28×28经过卷积层5×5的卷积
  • 变为4×24×24的Features maps
  • 再经过2×2的池化层变为4×12×12的Features maps
  • 再经过5×5的卷积层变为8×8×8的Features maps
  • 最后经过2×2的池化层,变为8×4×4的Features maps
  • 这个部分是特征提取。经过特征提取后,进行分类器部分,这里主要是通过全连接将其转化为一维向量,最后再变为十维的输出

    这里再进行一些必要的说明,全连接会导致原有的空间结构丧失,卷积神经网络可以保留原有的空间结构
    池化的目的是减小尺寸减低计算复杂度,降低过拟合的风险,保留关键信息(常用的Maxpooling就是取局部最大)
    convolution+subsampling=Feature Extraction

这里我们进行一下简单的扩展(栅格图像和矢量图像

栅格图像是以像素为基础的,适用于复杂的图像和照片,但受限于分辨率和放大时的失真。矢量图像是基于数学形状的,适用于图标、标志和需要无损缩放和编辑的应用。

我们使用卷积神经网络处理的图像通常情况是栅格图像

这些栅格图像由像素组成,每个像素都有自己的颜色信息,通常表示为红、绿、蓝(RGB)或灰度值。CNN的卷积层通过在图像上滑动卷积核来识别特征,这些卷积核与图像的局部区域相连接,从而有效地捕获图像中的各种特征,如边缘、纹理和形状。

🍋卷积层

下图展示了卷积层的基本元素,由input Channel、width、height、output Channel组成,这里取其中的一个Patch,然后将其在进行上下左右的平移。

或许大家对上图不是很清楚,那么我们来看看下图,或许可以更直观的理解卷积运算

这里是input 是1×5×5,经过1×3×3的卷积核运算,变为1×3×3的output

注意:这里input的Channel与卷积核的Channel的一致的,最终就会得到如下的output

那么如果是Channel=3呢,会有什么变化,卷积核与output会产生什么变化,下图清楚的展示流程

如果堆叠起来,那会变为下图所示

那么我们再扩展一下,如果有n个Input Channel、m个Output Channel

注意:这里input Channel的值与卷积核的Channel相同,Output Channel与卷积核的数量相同


使用Pytorch进行演示的话

import torch
in_channels, out_channels= 5, 10
width, height = 100, 100
kernel_size = 3
batch_size = 1
input = torch.randn(batch_size,
                    in_channels,
                    width,
                    height)
conv_layer = torch.nn.Conv2d(in_channels,
                            out_channels,
                            kernel_size=kernel_size)
output = conv_layer(input)
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

运行代码如下

接下来再简单介绍一下两个Conv2d的两个可选参数

🍋padding

当padding=1代表为input做一层0填充这样的Output就会和input拥有相同的尺寸了

import torch
input = [3,4,6,5,7,
        2,4,6,8,2,
        1,6,7,8,4,
        9,7,4,6,2,
        3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input) 
print(output)

运行结果如下

🍋stride

这个参数是步长的意思,可以减少特征图的尺寸

import torch
input = [3,4,6,5,7,
        2,4,6,8,2,
        1,6,7,8,4,
        9,7,4,6,2,
        3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)

运行结果如下=

🍋池化层

池化层上面已经简单介绍了,这不就不一一赘述

import torch
input = [3,4,6,5,
        2,4,6,8,
        1,6,7,8,
        9,7,4,6,
]
input = torch.Tensor(input).view(1, 1, 4, 4)
maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)
output = maxpooling_layer(input)
print(output)

运行结果如下

🍋完整代码

下图可以清楚的展示了一整个卷积流程

具体代码如下

import torch
import torch.nn.functional as F
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        batch_size = x.size(0)
        x = self.pooling(F.relu(self.conv1(x)))
        x = self.pooling(F.relu(self.conv2(x)))
        x = x.view(batch_size, -1) # flatten
        x = self.fc(x)
        return x
model = Net()

如果有GPU的话,我们可以使用GPU计算

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
model.to(device)

训练和测试代码如下

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
            running_loss = 0.0
 def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            inputs, target = data
            inputs, target = inputs.to(device), target.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, dim=1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
        print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))

🍋卷积神经网络的应用领域

  • 图像分类:CNNs可以识别图像中的对象、动物、人物等,因此被广泛用于图像分类任务。有名的例子包括ImageNet图像分类竞赛中的深度卷积网络。
  • 目标检测:CNNs可以帮助检测图像中的物体,并确定它们的位置。这在自动驾驶、视频监控和医学图像分析中都有重要应用。
  • 人脸识别:CNNs可以识别和验证人脸,这在手机解锁、社交媒体标签和安全监控中都有广泛应用。
  • 自然语言处理:CNNs不仅仅用于图像处理,还可以用于文本分类和自然语言处理任务,如情感分析和垃圾邮件检测。
  • 医学图像分析:CNNs有助于分析医学影像,如X光片、MRI扫描和CT扫描,用于诊断和疾病检测。

🍋总结

卷积神经网络是深度学习的关键技术之一,它在图像处理和其他领域中取得了巨大的成功。随着技术的不断发展,我们可以期待看到更多令人兴奋的进展和应用。如果你对这个领域感兴趣,可以看看刘二大人讲的

本文根据b站刘二大人《PyTorch深度学习实践》完结合集学习后加以整理,文中图文均不属于个人。

挑战与创造都是很痛苦的,但是很充实。

相关文章
|
6天前
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】
在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是**将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
|
8天前
|
机器学习/深度学习 编解码 边缘计算
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
本文介绍了如何在YOLOv5中用ShuffleNetV2替换卷积以减少计算量。ShuffleNetV2是一个轻量级网络,采用深度可分离卷积、通道重组和多尺度特征融合技术。文中提供了一个逐步教程,包括ShuffleNetV2模块的代码实现和在YOLOv5配置文件中的添加方法。此外,还分享了完整的代码链接和GFLOPs的比较,显示了GFLOPs的显著减少。该教程适合初学者实践,以提升深度学习目标检测技能。
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
|
5天前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 融合模块 | 用Resblock+CBAM卷积替换Conv【轻量化网络】
在这个教程中,介绍了如何将YOLOv8的目标检测模型改进,用Resblock+CBAM替换原有的卷积层。Resblock基于ResNet的残差学习思想,减少信息丢失,而CBAM是通道和空间注意力模块,增强网络对特征的感知。教程详细解释了ResNet和CBAM的原理,并提供了代码示例展示如何在YOLOv8中实现这一改进。此外,还给出了新增的yaml配置文件示例以及如何注册模块和执行程序。作者分享了完整的代码,并对比了改进前后的GFLOPs计算量,强调了这种改进在提升性能的同时可能增加计算需求。教程适合深度学习初学者实践和提升YOLO系列模型的性能。
|
8天前
|
机器学习/深度学习 人工智能 算法
食物识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
食物识别系统采用TensorFlow的ResNet50模型,训练了包含11类食物的数据集,生成高精度H5模型。系统整合Django框架,提供网页平台,用户可上传图片进行食物识别。效果图片展示成功识别各类食物。[查看演示视频、代码及安装指南](https://www.yuque.com/ziwu/yygu3z/yhd6a7vai4o9iuys?singleDoc#)。项目利用深度学习的卷积神经网络(CNN),其局部感受野和权重共享机制适于图像识别,广泛应用于医疗图像分析等领域。示例代码展示了一个使用TensorFlow训练的简单CNN模型,用于MNIST手写数字识别。
27 3
|
13天前
|
机器学习/深度学习 算法 PyTorch
卷积神经网络的结构组成与解释(详细介绍)
卷积神经网络的结构组成与解释(详细介绍)
39 0
|
13天前
|
机器学习/深度学习 算法 数据挖掘
深度学习500问——Chapter05: 卷积神经网络(CNN)(4)
深度学习500问——Chapter05: 卷积神经网络(CNN)(4)
24 1
|
13天前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习500问——Chapter05: 卷积神经网络(CNN)(3)
深度学习500问——Chapter05: 卷积神经网络(CNN)(3)
23 1
|
13天前
|
机器学习/深度学习 存储 算法
卷积神经网络(CNN)的数学原理解析
卷积神经网络(CNN)的数学原理解析
47 1
卷积神经网络(CNN)的数学原理解析
|
13天前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习500问——Chapter05: 卷积神经网络(CNN)(2)
深度学习500问——Chapter05: 卷积神经网络(CNN)(2)
26 2
|
13天前
|
机器学习/深度学习 算法 PyTorch
卷积神经网络(CNN)——基础知识整理
卷积神经网络(CNN)——基础知识整理
41 2

热门文章

最新文章