ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!

简介: 【2月更文挑战第17天】ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!

24.jpg
在人工智能的发展浪潮中,模型的通用性和适应性一直是研究者们追求的目标。尤其是在处理图结构数据方面,如何设计一个能够应对各种分类任务的统一模型,成为了一个重要的研究方向。近年来,大型语言模型(LLMs)在自然语言处理领域取得了显著的成就,但相比之下,图结构数据的统一模型开发却相对滞后。这一现象的背后,是图学习领域所面临的一系列独特挑战。

首先,不同领域的图数据具有截然不同的属性和分布特征,这使得将它们统一表示在一个共同的空间中变得异常困难。其次,图任务的多样性,包括节点分类、链接预测和图分类等,要求模型能够采用不同的嵌入策略来处理。最后,如何在图数据上实现有效的上下文学习,即如何在不进行微调的情况下使模型适应新任务,也是一个尚待解决的问题。

为了应对这些挑战,研究者们提出了一种名为One for All(OFA)的通用框架。OFA的核心思想是利用文本属性图(TAGs)来统一不同领域的图数据。通过将自然语言应用于图的节点和边的描述,OFA能够将这些多样化的文本属性编码为同一嵌入空间中的特征向量。这种方法不仅简化了图数据的表示,还为模型提供了一种跨领域的通用性。

OFA框架的另一个创新之处在于引入了“兴趣节点”(NOI)的概念。NOI是指在特定任务中需要关注的目标节点集合。通过构建NOI子图和NOI提示节点,OFA能够将不同类型的图任务统一为单一的任务表示,从而简化了模型的训练和推理过程。此外,OFA还提出了一种新颖的图提示范式(GPP),它通过在输入图上附加特定的提示子结构,使模型能够在不需要微调的情况下适应不同的任务。这种范式为图数据的上下文学习提供了一种新的思路。

在实验部分,研究者们对OFA模型进行了全面的评估。他们使用来自多个领域的图数据,包括引文网络、分子图和知识图等,对OFA进行了训练,并在监督学习、少样本学习和零样本学习等不同场景下测试了其性能。实验结果表明,OFA模型在各种任务上都表现出色,尤其是在零样本学习方面,OFA展现出了显著的优势,这是大多数现有图模型所无法比拟的。

尽管OFA在图基础模型方面取得了显著的进展,但它仍然存在一些局限性。例如,OFA目前还无法处理回归任务,因为这类任务的目标值可能没有明确的界限。此外,与LLMs相比,OFA的训练数据量相对较少,这可能限制了其在某些任务上的表现。研究者们认为,通过引入更多的训练技术和数据,OFA的性能有望得到进一步提升。

OFA框架为图神经网络的研究提供了一种新的视角。它通过文本属性图、兴趣节点和图提示范式,展示了如何构建一个能够处理多种图任务的通用模型。这一成果为图结构数据的处理提供了新的可能性。

目录
相关文章
|
4天前
|
机器学习/深度学习 数据挖掘 算法框架/工具
想要了解图或图神经网络?没有比看论文更好的方式,面试阿里国际站运营一般会问什么
想要了解图或图神经网络?没有比看论文更好的方式,面试阿里国际站运营一般会问什么
|
4天前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
10 1
|
6天前
|
机器学习/深度学习
深度学习网络训练,Loss出现Nan的解决办法
深度学习网络训练,Loss出现Nan的解决办法
9 0
|
6天前
|
机器学习/深度学习 并行计算 数据可视化
Batch Size 对神经网络训练的影响
Batch Size 对神经网络训练的影响
17 0
|
6天前
|
机器学习/深度学习 并行计算 算法
MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
|
6天前
|
机器学习/深度学习 PyTorch 算法框架/工具
Python用GAN生成对抗性神经网络判别模型拟合多维数组、分类识别手写数字图像可视化
Python用GAN生成对抗性神经网络判别模型拟合多维数组、分类识别手写数字图像可视化
|
6天前
|
机器学习/深度学习 数据采集 算法
Python对中国电信消费者特征预测:随机森林、朴素贝叶斯、神经网络、最近邻分类、逻辑回归、支持向量回归(SVR)
Python对中国电信消费者特征预测:随机森林、朴素贝叶斯、神经网络、最近邻分类、逻辑回归、支持向量回归(SVR)
|
6天前
|
人工智能 数据可视化
【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
|
6天前
|
机器学习/深度学习 算法 TensorFlow
【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享
【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享
|
6天前
|
机器学习/深度学习 传感器 数据可视化
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类

热门文章

最新文章