R语言深度学习:用keras神经网络回归模型预测时间序列数据

简介: R语言深度学习:用keras神经网络回归模型预测时间序列数据

回归数据可以用Keras深度学习API轻松拟合。在本教程中,我们将简要地学习如何通过使用R中的Keras神经网络模型来拟合和预测回归数据。在这里,我们将看到如何创建简单的回归数据,建立模型,训练它,并最终预测输入数据。该教程包括

  • 生成样本数据集
  • 建立模型
  • 训练模型并检查准确性
  • 预测测试数据
  • 源代码列表

我们将从加载R的Keras库开始。

library(keras)

生成样本数据集

首先,本教程的样本回归时间序列数据集。

plot( c )
points( a )
points(  b )
points(  y )

红线是y输出,其余的点是x输入的序列。

我们需要将x输入数据转换成矩阵类型。

x = as.matrix(data.frame(a,b,c))
y = as.matrix(y)

建立模型

接下来,我们将创建一个keras序列模型。

loss = "mse",
   optimizer =  "adam", 
   metrics = list("mean\_absolute\_error")

训练模型和检查准确性

接下来,我们将用x、y数据来拟合模型,并检查其准确性。

evaluate(x, y, verbose = 0)
print(scores)

接下来,我们将预测x数据,并在图中与原始y值进行比较。

plot(x, y)

预测测试数据

接下来,我们将把数据集分成训练和测试两部分,再次训练模型,预测测试数据。

fit(train\_x,train\_y)
predict(test_x)

最后,我们将绘制原始测试数据的Y值和预测值。

plot(x, test_y)
lines(x, y_pred)

在本教程中,我们已经简单了解了如何在R中用keras神经网络模型拟合回归数据。


相关文章
|
7天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
36 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
9天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
39 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
206 80
|
28天前
|
前端开发 小程序 Java
uniapp-网络数据请求全教程
这篇文档介绍了如何在uni-app项目中使用第三方包发起网络请求
42 3
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
4月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
79 3
|
9月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
9月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为

热门文章

最新文章