一篇文章搞懂CNN(卷积神经网络)及其所含概念

简介: 一篇文章搞懂CNN(卷积神经网络)及其所含概念


当下,计算机视觉在人工智能领域中扮演着至关重要的角色。而卷积神经网络(Convolutional Neural Network,CNN)则是计算机视觉任务中最为常用且高效的模型之一。本文将介绍CNN的基本原理、架构和一些经典网络模型。并且解释上面这幅图。

1. 什么是卷积神经网络:

卷积神经网络 = 神经网络 + 其他层次

看到了吗,上图中只有绿色的部分是全连接神经网络,其余都是CNN加入的其他层次

2. 应用领域:

主要应用与计算机视觉领域(视频等于一张张图片)(一般用gpu(图像处理单元)比CPU快几百倍)

  1. 检测任务
  2. 分类与检索
  3. 超分辨率重构
  4. 人脸识别

3. 架构:

我们正式开始介绍CNN的架构,包括四个部分:

  1. 输入层

输入图像(h×w×c)

  1. 卷积层(CONV)

新概念:

卷积核(filter W)(权重参数矩阵)

过程:

通道的每个像素点(起初是 图像颜色通道:RGB(R channel,G channel,B channel))与每个卷积核维度卷积(与卷积核内积)后得到一个特征值

对每个颜色通道都要做卷积(这三个卷积核可以不一样),算完之后这三个通道结果加起来再加上偏置b,得到一个特征图(可以用多个卷积核卷积得到多个特征图)

总结就是:卷积核把箱子拍扁成一个一维度的更小的纸(等于 内积之和+偏置)

  1. 池化层(POOL)(压缩、下采样)

池化方法:

最大池化(MAX POOLING):提取最大值代替

不改特征图个数c,只缩减高h和宽w

  1. 全连接层(FC)

全连接开始前 卷积、激活函数(非线性变换 激活函数 RELU)、池化 循环使用,把最后结果拉成一条特征向量后交给全连接层

全连接层结构在这里就不多赘述了

4. 卷积层的参数和名词

参数:

  1. 边缘填充(pad):在最外层添加一圈数字(一般是0,因为0×任何数字都是0,防止干扰数据)从而防止对边缘的计算过少
  2. 卷积核个数:有多少个则得到多少个特征值
  3. 步长(S):卷积核移动的步长

卷积结果计算公式:

如果输入数据是32*32*3的图像,用10个5*5*3的filter来进行卷积操作指定步长为1,边界填充为2,最终输入的规模为?

(32-5+22)/1+1=32,所以输出规模为3232*10经过卷积操作后也可以保持特征图长度、宽度不变。

名词:

感受野:卷积后的一个像素点是由原来多少个像素计算得到的(比如上图的感受野就是3*3)

5. 注意:

带参数计算的(有w和b的、要根据设定更新东西的)层叫做一层,只有卷积层和全连接层被叫做层

堆叠小的卷积核比用一个大的卷积核需要的参数少(可以自己计算)

6. 经典网络:

在计算机视觉领域,有几个经典的CNN模型:

AlexNet:是2012年ImageNet竞赛的冠军,它引入了深度学习在计算机视觉中的重要性,并采用了多层卷积和全连接层的架构。

VGG:由牛津大学的研究团队提出,其特点是网络结构非常深,使用了连续的小卷积核进行卷积操作,参数量较大。

ResNet:引入了残差连接的思想,解决了深层网络训练中的梯度消失和梯度爆炸问题,使得网络可以更深。

目录
相关文章
|
8天前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
29 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
6天前
|
网络协议 网络安全 数据安全/隐私保护
计算机网络概念:网关,DHCP,IP寻址,ARP欺骗,路由,DDOS等
计算机网络概念:网关,DHCP,IP寻址,ARP欺骗,路由,DDOS等
25 4
|
7天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
11天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
22 0
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
22天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
29天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
82 1

热门文章

最新文章