基于改进粒子群算法的微电网多目标优化调度附Matlab代码

简介: 基于改进粒子群算法的微电网多目标优化调度附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

为了解决现有冷热电联供型综合能源系统大多只单一考虑系统机组投资成本或系统环境污染,影响系统整体优化运行的问题,以系统经济性和环保性为目标,对冷热电联供系统进行研究分析。构建含燃气轮机、燃气锅炉、电制冷机等机组 的冷热电联供系统优化模型并建立约束条件。结果表明粒子群算法能够同时兼顾系统的经济性和环保性,使系统运行更加优化,为之后的能源供给系统的规划提供前期依据。

⛄ 部分代码

classdef Repository

   properties

       swarm

       rep_size

       Grid

       grid_size

       alpha

       beta

       gamma

   end

   

   methods

       function obj = Repository(swarm,rep_size,grid_size,alpha,beta,gamma)

           if nargin>0

               obj.rep_size = rep_size;

               swarm = Particle.updateDomination(swarm);

               obj.swarm = swarm(~[swarm.isDominated]);

               obj.grid_size=grid_size;

               obj.alpha=alpha;

               obj.beta = beta;

               obj.gamma = gamma;

               obj.Grid=obj.grid();

               for i = 1:length(obj.swarm)

                   obj.swarm(i) = obj.swarm(i).updateGridIndex(obj.Grid);

               end

           end

       end

       function Grid = grid(obj)

           C = vertcat(obj.swarm.cost);

           cmin = min(C,[],1);

           cmax = max(C,[],1);

           dc = cmax - cmin;

           cmin = cmin - obj.alpha * dc;

           cmax = cmax + obj.alpha * dc;

           nObj = size(C,2);

           empty_grid.LB = [];

           empty_grid.UB = [];

           Grid = repmat(empty_grid,nObj,1);

           for j = 1:nObj

               cj = linspace(cmin(j),cmax(j),obj.grid_size+1);

               Grid(j).LB = [-inf, cj];

               Grid(j).UB = [cj, +inf];

           end

       end

       function leader = SelectLeader(obj)

           GI = [obj.swarm.GridIndex];

           OC = unique(GI);

           N = zeros(size(OC));

           for k = 1:length(OC)

               N(k) = length(find(GI==OC(k)));

           end

           P = exp(-obj.beta*N);

           P = P/sum(P);

           sci = Repository.RouletteWheelSelection(P);

           sc = OC(sci);

           SCM = find(GI==sc);

           smi = randi([1 length(SCM)]);

           sm = SCM(smi);

           leader = obj.swarm(sm);

       end

       function obj = DeleteOneRepMemebr(obj)

           GI=[obj.swarm.GridIndex];

           OC=unique(GI);

           N=zeros(size(OC));

           for k=1:length(OC)

               N(k)=length(find(GI==OC(k)));

           end

           P=exp(obj.gamma*N);

           P=P/sum(P);

           sci=Repository.RouletteWheelSelection(P);

           sc=OC(sci);

           SCM=find(GI==sc);

           smi=randi([1 length(SCM)]);

           sm=SCM(smi);

           obj.swarm(sm)=[];

       end

       function obj = update(obj,swarm)

           swarm = Particle.updateDomination(swarm);

           obj.swarm = [obj.swarm,swarm(~[swarm.isDominated])];

           obj.swarm = Particle.updateDomination(obj.swarm);

           obj.swarm = obj.swarm(~[obj.swarm.isDominated]);

           obj.Grid=obj.grid();

           for i = 1:length(obj.swarm)

               obj.swarm(i) = obj.swarm(i).updateGridIndex(obj.Grid);

           end

           Extra=length(obj.swarm)-obj.rep_size;

           for e=1:Extra

               obj=obj.DeleteOneRepMemebr();

           end

       end

   end

   methods (Static)

       function i = RouletteWheelSelection(P)

           i = find(rand<=cumsum(P),1,'first');

       end

   end

end

⛄ 运行结果

⛄ 参考文献

[1]李海平, 齐卓砾, 胡君朋. 基于FFT-DBN的行星齿轮箱齿面磨损故障智能判定方法研究[J]. 测控技术, 2020, 39(12):6.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
208 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
5天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
3天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
6天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
18天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
26天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
27天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
28天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。