私藏!资深数据专家SQL效率优化技巧 ⛵

简介: 同一个数据分析的需求,不同人的SQL代码效率上会差别很大!本文给大家梳理集中效率优化方法,这也是数据岗面试的高频问题哦!快学起来~
48a826f05fd80b7c420ce0850e69cfe2.png
💡 作者: 韩信子@ ShowMeAI
📘 数据分析实战系列https://www.showmeai.tech/tutorials/40
📘 本文地址https://www.showmeai.tech/article-detail/391
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容
364e59af9d47fb254f24554490e8da1a.png

所有的数据相关工作人员,包括数据开发、数据分析师、数据科学家等,多多少少会使用数据库,我们很多的业务数据也是存放在业务表中。但即使是同一个需求,不同人写出的 SQL 效率上也会有很大差别,而我们在数据岗位面试的时候,也会考察相关的技能和思考,在本篇文章中,ShowMeAI将给大家梳理 SQL 中可以用于优化效率和提速的核心要求。

bd38f0d215e0fe061901b11f41d7d3f8.png
关于 SQL 的基础技能知识,欢迎大家查阅 ShowMeAI制作的速查表:

📘 编程语言速查表 | SQL 速查表

💡 1)使用正则regexp_like代替LIKE

如下例所示,当我们要进行模糊匹配的时候(尤其是匹配项很多的时候),我们使用regexp_like代替LIKE可以提高效率。

💦 低效代码

SELECT *
FROM phones
WHERE
    lower(name) LIKE '%samsing&' OR
    lower(name) LIKE '%apple&' OR
    lower(name) LIKE '%htc&' OR

💦 高效代码

SELECT *
FROM phones
WHERE
    REGEXP_LIKE(lower(name),'samsung|apple|htc')

💡 2)使用regexp_extract代替 Case-when Like

类似的,使用regexp_extract代替Case-when Like可以提高效率。

💦 低效代码

SELECT *
CASE
    WHEN concat(' ', name, ' ') LIKE '%acer%' then 'Acer' 
    WHEN concat(' ', name, ' ') LIKE '%samsung%' then 'Samsung'
    WHEN concat(' ', name, ' ') LIKE '%dell%' then 'Dell'
AS brand
FROM laptops

💦 高效代码

SELECT
      regexp_extract(name,'(acer|samsung|dell)')
AS brand
FROM laptops

💡 3)IN子句转换为临时表

但我们进行数据选择时候,有时候会用到in作为条件选择,如果我们的候选项非常多,那利用临时表可能会带来更好的效率。

💦 低效代码

SELECT *
FROM table1 as t1
WHERE
     itemid in (3363134, 5343, 5555555)

💦 高效代码

SELECT *
FROM table 1 as t1
JOIN (
      SELECT
           itemid
      FROM (
            SELECT
                 split('3363134, 5343, 5555555') as bar
           )
           CROSS JOIN
                   UNNEST(bar) AS t(itemid)
      ) AS table2 as t2
ON
  t1.itemid = t2.itemid

💡 4)将 JOIN 的表从大到小排序

当我们要进行表关联(join)的时候,我们可以对表基于大小进行一个排序,把大表排在前面,小表排在后面,也会带来效率的提升。

💦 低效代码

SELECT *
FROM small_table
JOIN large_table
ON small_table.id = large_table.id

💦 高效代码

SELECT *
FROM large_table
JOIN small_table
ON small_table.id = large_table.id

💡 5)使用简单的表关联条件

如果我们要基于条件对两个表进行连接,那条件中尽量不要出现复杂函数,如果一定需要使用,那我们可以先用函数对表的数据处理产出用于连接的字段。

如下例中,我们对ab表进行连接,条件是b表的「年」「月」「日」拼接后和a表的日期一致,那粗糙的写法和优化的写法分别如下:

💦 低效代码

SELECT *
FROM table1 a
JOIN table2 b
ON a.date = CONCAT(b.year, '-', b.month, '-', b.day)

💦 高效代码

SELECT *
FROM table1 a
JOIN (
     SELECT name, CONCAT(b.year, '-', b.month, '-', b.day) as date
     FROM table2 b
) new
ON a.date = new.date

💡 6)分组的字段按照类别取值种类数排序

如果我们需要对数据按照多个字段分组,尤其是字段中有id类这种取值非常多的类别字段,我们应当把它排在最前面,这也可以对效率有一些帮助。

💦 低效代码

SELECT 
  main_category,
  sub_category,
  itemid
  sum(price)
FROM
  table1
GROUP BY
  main_category, sub_category, itemid

💦 高效代码

SELECT 
  main_category,
  sub_category,
  itemid
  sum(price)
FROM
  table1
GROUP BY
  itemid, sub_category, main_category

💡 7)避免 WHERE 子句中的子查询

当我们要查询的语句的where条件中包含子查询时,我们可以通过with语句构建临时表来调整连接条件,提升效率,如下:

💦 错误代码

SELECT sum(price)
FROM table1
WHERE itemid in (
         SELECT itemid
         FROM table2
)

💦 好代码

WITH t2
     AS (SELECT itemid
         FROM   table2)
SELECT Sum(price)
FROM   table1 AS t1
       JOIN t2
         ON t1.itemid = t2.itemid 

💡 8)取最大直接用Max而非Rank后取第1

这一条很好理解,如果我们要取某字段最大取值,我们直接使用 max,而不要用 rank 排序后取第 1,如下代码所示:

💦 低效代码

SELECt *
FROM (
     SELECT userid, rank() over (order by prdate desc) as rank
     FROM table 1
)
WHERE ranking = 1

💦 高效代码

SELECT userid, max(prdate)
FROM table1
GROUP BY 1

💡 9)其他优化点

  • 对于大表,利用approx_distinct()代替count(distinct)来计数。
  • 对于大表,利用approx_percentie(metric,0.5)代替median
  • 尽可能避免使用UNION

参考资料

推荐阅读

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
相关文章
|
6月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
938 43
|
6月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
394 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
7月前
|
SQL
SQL如何只让特定列中只显示一行数据
SQL如何只让特定列中只显示一行数据
|
4月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
293 6
|
11月前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
286 4
|
12月前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
9月前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
7月前
|
SQL
SQL中如何删除指定查询出来的数据
SQL中如何删除指定查询出来的数据
|
7月前
|
SQL 关系型数据库 MySQL
SQL如何对不同表的数据进行更新
本文介绍了如何将表A的Col1数据更新到表B的Col1中,分别提供了Microsoft SQL和MySQL的实现方法,并探讨了多表合并后更新的优化方式,如使用MERGE语句提升效率。适用于数据库数据同步与批量更新场景。
|
9月前
|
SQL 数据挖掘 关系型数据库
【SQL 周周练】一千条数据需要做一天,怎么用 SQL 处理电表数据(如何动态构造自然月)
题目来自于某位发帖人在某 Excel 论坛的求助,他需要将电表缴费数据按照缴费区间拆开后再按月份汇总。当时用手工处理数据,自称一千条数据就需要处理一天。我将这个问题转化为 SQL 题目。
310 12