线性规划求解第一的MindOpt如何使用Python语言的API建模及优化

简介: MindOpt是一款高效的优化算法软件包,求解算法实现了线性规划(LP)、混合整数线性规划(MILP)、二次规划(QP),可以支持命令行、c、c++、java和python调用。接下来我们将发布一系列文章,讲述各个语言如何使用 MindOpt 来求解数学规划问题

本篇文章是系列文章的开篇,下文会分享小编个人线性规划的定义,然后举个一例题,最后将讲述使用 MindOpt Python 语言的 API 来建模以及求解 线性规划问题示例 中的问题以及求解的结果


MindOpt Python、C、C++语言求解LP、MILP、QP问题系列


安装MindOpt

用户可以点这里下载安装MindOpt优化求解器,免费的。找不到安装步骤点这里

(官网https://opt.aliyun.com有更多信息等着您哟!)


线性规划

我们先介绍一下线性规划我个人认为是在线性的目标和约束中,找出一个最优解(如最大利润或最低成本)。线性规划可以广泛的应用在我们的生活中,解决资源利用、人力调配、生产安排等问题。


入门案例

一位员工每天要负责处理a任务(生成零部件) 和b任务(组装产品)。其参与a任务的报酬为100元/小时,b任务的报酬为150元/小时。工厂要求该员工每天在每个任务上花费至少 3 个小时。已知该员工每天工作8小时(因此在 6 小时之外,可以自行决定 2 小时如何工作),那么他该如何在两项任务上分配时间以得到尽可能多的报酬?


  • 以上问题可以被称为任务分配问题,也可以被视为一个简单的排产排程问题,由于该员工要决策时间分配,我们引入决策变量 Xa和 Xb用于表示该工人投入在任务和任务中的时长。由问题描述可知,这些变量需要满足Xa+Xb=8 和 Xa>=3,Xb>=3。
  • 此外,该工人的目标是获得尽可能多的报酬。在定义如上三要素后,我们可以建立如下的数学规划问题
  • 决策变量: Xa,Xb
  • 目标函数: maxmize 100Xa + 150Xb
  •     约束:  s.t.  Xa + Xb = 8
  •                      Xa>=3 , Xb>=3
  • 这个列题最后求出的最优解是每天参与a任务三小时、b任务5小时。

image.png


在上文的例子,是一个简单的线性规划问题,只有两个决策变量,而线性规划问题示例中的问题涉及到四个决策变量,人工去求最优解呢,需要先把线性规划问题转换为标准形式,然后制表、入基、出基、换基,最后迭代得出最优解,过程比较复杂。


那么我们可以使用商用求解器 MindOpt ,让计算机来帮助我们求解。


线性规划问题可以用以下数学公式来描述:

image.png

公式参考自:https://solver.damo.alibaba.com/doc/html/model/lp/linear%20problem.html


进阶算例-实际例子算

要找到一个和线性规划问题示例中的问题相匹配的文字列题比较困难,所以我们在这里做一个假设,把它当成是一个人力调配的问题,求解的是一个目标函数的最小值,也就是花费最低成本去解决问题


线性规划问题示例:

image.png


Python+MindOpt代码实现

 # 引入python包
from mindoptpy import *

if __name__ == "__main__":

    MDO_INFINITY = MdoModel.get_infinity()

    # Step 1.创建模型并更改参数。
    
    model = MdoModel()


    try:

        # Step 2. 输入模型。

        #  改为最小化问题。
        #  通过 mindoptpy.MdoModel.set_int_attr() 将目标函数设置为 最小化 

        model.set_int_attr(MDO_INT_ATTR.MIN_SENSE, 1)

        #  添加变量。
        #  通过mindoptpy.MdoModel.add_var() 来添加四个优化变量,
        #  定义其下界、上界、名称和类型。

        x = []

        x.append(model.add_var(0.0,         10.0, 1.0, None, "x0", False))

        x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x1", False))

        x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x2", False))

        x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x3", False))

        #  添加约束。

        #  注意这里的非零元素是按行顺序输入的。

        model.add_cons(1.0, MDO_INFINITY, 1.0 * x[0] + 1.0 * x[1] + 2.0 * x[2] + 3.0 * x[3], "c0")

        model.add_cons(1.0,          1.0, 1.0 * x[0]              - 1.0 * x[2] + 6.0 * x[3], "c1")

        
        # Step 3. 解决问题并填充结果。
        # 调用 mindoptpy.MdoModel.solve_prob() 求解优化问题,
        # 并用 mindoptpy.MdoModel.display_results() 来查看优化结果

        model.solve_prob()
        model.display_results()

        # 调用 mindoptpy.MdoModel.get_status() 来检查求解器的优化状态,
        # 并通过 mindoptpy.MdoModel.get_real_attr() 和 
        # mindoptpy.MdoVar.get_real_attr() 来获取目标值和最优解。
        status_code, status_msg = model.get_status()
        if status_msg == "OPTIMAL":
            print("Optimizer terminated with an OPTIMAL status (code {0}).".format(status_code))
            print("Primal objective : {0}".format(round(model.get_real_attr(MDO_REAL_ATTR.PRIMAL_OBJ_VAL), 2)))
            for curr_x in x:
                print(" - x[{0}]          : {1}".format(curr_x.get_index(), round(curr_x.get_real_attr(MDO_REAL_ATTR.PRIMAL_SOLN), 2)))
        else:
            print("Optimizer terminated with a(n) {0} status (code {1}).".format(status_msg, status_code))

        # 如果求解异常,在这里将会看见它的状态码和错误原因
    except MdoError as e:
        print("Received Mindopt exception.")
        print(" - Code          : {}".format(e.code))
        print(" - Reason        : {}".format(e.message))
    except Exception as e:
        print("Received exception.")
        print(" - Reason        : {}".format(e))
    finally:

        # Step 4. 释放模型。
        # 调用 mindoptpy.MdoModel.free_mdl() 来释放内存
        # (多次运行部分脚本的时候有些变量已经被用,所以调用这个api进行清除)

        model.free_mdl()
MindOpt求解的结果
# 模型摘要
Model summary.
 - Num. variables     : 4
 - Num. constraints   : 2
 - Num. nonzeros      : 7
 - Bound range        : [1.0e+00,1.0e+01] #限制范围
 - Objective range    : [1.0e+00,1.0e+00] #目标范围
 - Matrix range       : [1.0e+00,6.0e+00] #矩阵范围

Presolver started.
Presolver terminated. Time : 0.001s

Simplex method started.

    Iteration       Objective       Dual Inf.     Primal Inf.     Time
            0     0.00000e+00      0.0000e+00      1.0000e+00     0.00s    
            2     4.00000e-01      0.0000e+00      0.0000e+00     0.01s    
Postsolver started.
Simplex method terminated. Time : 0.004s

# 决策变量的最佳取值
Optimizer terminated with an OPTIMAL status (code 1).
Primal objective : 0.4
 - x[0]          : 0.0
 - x[1]          : 0.0
 - x[2]          : 0.2
 - x[3]          : 0.2

# 展示了使用的单纯形法,优化器的状态,优化使用的时间
Optimizer summary.
 - Optimizer used     : Simplex method
 - Optimizer status   : OPTIMAL
 - Total time         : 0.005s

# 目标函数的实现
Solution summary.       Primal solution
 - Objective          : 4.0000000000e-01

联系我们

钉钉:damodi

邮箱地址:solver.damo@list.alibaba-inc.com


目录
打赏
0
0
12
0
76
分享
相关文章
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
【强化学习】基于深度强化学习的微能源网能量管理与优化策略研究【Python】
本项目基于深度Q网络(DQN)算法,通过学习预测负荷、可再生能源输出及分时电价等信息,实现微能源网的能量管理与优化。程序以能量总线模型为基础,结合强化学习理论,采用Python编写,注释清晰,复现效果佳。内容涵盖微能源网系统组成、Q学习算法原理及其实现,并提供训练奖励曲线、发电单元功率、电网交互功率和蓄电池调度等运行结果图表,便于对照文献学习与应用。
全面提升Python性能的十三种优化技巧
通过应用上述十三种优化技巧,开发者可以显著提高Python代码的执行效率和性能。每个技巧都针对特定的性能瓶颈进行优化,从内存管理到并行计算,再到使用高效的数值计算库。这些优化不仅能提升代码的运行速度,还能提高代码的可读性和可维护性。希望这些技巧能帮助开发者在实际项目中实现更高效的Python编程。
109 22
【2025.3.08更新】Linkreate wordpressAI智能插件|自动生成SEO文章/图片/视频+长尾词优化 内置DeepSeek多模型支持与API扩展
Linkreate WordPress AI插件提供强大的自动化文章生成、SEO优化、关键词管理和内容采集功能。它能根据关键词自动生成高质量文章,支持多语言和批量生成,内置长尾关键词生成工具,并可定时自动发布文章。插件还集成了多种AI服务,支持前端AI客服窗口及媒体生成,帮助用户高效管理网站内容,提升SEO效果。
Python 请求微店商品详情数据 API 接口
微店开放平台允许开发者通过API获取商品详情数据。使用Python请求微店商品详情API的主要步骤包括:1. 注册并申请API权限,获得app_key和app_secret;2. 确定API接口地址与请求参数,如商品ID;3. 生成签名确保请求安全合法;4. 使用requests库发送HTTP请求获取数据;5. 处理返回的JSON格式响应数据。开发时需严格遵循微店API文档要求。
Linkreate wordpressAI智能插件|自动生成SEO文章/图片/视频+长尾词优化 内置DeepSeek多模型支持与API扩展
Linkreate WordPress AI插件提供强大的文章生成与优化功能,支持自动化生成高质量文章、批量生成、SEO优化及双标题定制。关键词生成管理方面,可批量生成长尾关键词并自定义参数。内容采集功能支持单篇和批量采集指定网站内容,可视化规则生成器方便使用。定时任务实现全自动文章生成,24小时稳定运行。API集成兼容多种AI服务,如DeepSeek、OpenAI等,并支持前端AI客服窗口。媒体生成功能包括自动为文章生成图片和短视频,提升内容丰富度。官网提供插件演示及下载:[https://idc.xymww.com/](https://idc.xymww.com/)
利用Postman和Apipost进行API测试的实践与优化-动态参数
在API测试中,Postman和Apipost是常用的工具。Postman内置变量功能有限,面对复杂场景时需编写JavaScript脚本,增加了维护成本。而Apipost提供丰富的内置变量、可视化动态值配置和低代码操作,支持生成真实随机数据,如邮箱、手机号等,显著提升测试效率和灵活性。对于复杂测试场景,Apipost是更好的选择,能有效降低开发与维护成本,提高测试工作的便捷性和可维护性。
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
1688平台API接口实战:Python实现店铺全量商品数据抓取
本文介绍如何使用Python通过1688开放平台的API接口自动化抓取店铺所有商品数据。首先,开发者需在1688开放平台完成注册并获取App Key和App Secret,申请“商品信息查询”权限。接着,利用`alibaba.trade.product.search4trade`接口,构建请求参数、生成MD5签名,并通过分页机制获取全量商品数据。文中详细解析了响应结构、存储优化及常见问题处理方法,还提供了竞品监控、库存预警等应用场景示例和完整代码。
Python 高级编程与实战:深入理解 Web 开发与 API 设计
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧以及数据科学和机器学习。本文将深入探讨 Python 在 Web 开发和 API 设计中的应用,并通过实战项目帮助你掌握这些技术。

热门文章

最新文章