✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
本研究提出了一种使用比例-积分-微分 (PID) 控制器控制微型机器人系统位置的新方法。利用正余弦算法(SCA),应用新的目标函数积分平方时间乘以误差平方(ISTES)得到最优PID控制器指标。通过与基于 ISTES 目标函数的灰狼优化 (GWO) 进行比较,验证了所提出的基于 SCA 的控制器的效率。将使用 MATLAB、Simulink 将每种控制技术应用于已识别的模型,并使用 LABVIEW 软件进行实验测试。此外,与基于上升、设置时间和设置误差的 GWO 技术相比,SCA 技术具有最高的性能。因此,建议应用 SSA 来调整 PID 的参数,因为它可以提高其在微型机器人系统中的性能。发现使用 SCA 的错误量比以前的其他实验减少了 37.5%。
⛄ 部分代码
close all
clear all
clc
global Kp Ki Kd
% Opening simulink model
open('PID_controlled_process.slx')
%% problem definition
objfun = @(K)ISTES_PID(K);
N = 3; % NO OF VARIABLES
Kmin = [0 0 0]; % Vector of minimum value of variables
Kmax = [100 1 1]; % Vector of maximum value of variables
SearchAgents_no=30; % Number of search agents
Max_iteration=25; % Maximum numbef of iterations
lb = Kmin;
ub = Kmax;
dim = N;
fobj = objfun;
% Load details of the selected benchmark function
%[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
figure('Position',[284 214 660 290])
semilogy(cg_curve,'Color','b')
title('Convergence curve')
xlabel('Iteration');
ylabel('Best flame (score) obtained so far');
axis tight
grid off
box on
legend('SCA')
%
display(['The best solution obtained by SCA is : ', num2str(Best_pos)]);
⛄ 运行结果
⛄ 参考文献
1- Eissa, M. M., Virk, G. S., AbdelGhany, A. M., & Ghith, E. S. (2013). Optimum induction motor speed control technique using particle swarm optimization. International Journal of Energy Engineering, 3(2), 65-73. 2-
2- Eissa, M. M., Virk, G. S., AbdelGhany, A. M., & Ghith, E. S. (2013). Optimum induction motor speed control technique using genetic algorithm. Am. J. Intell. Syst, 3(1), 1-12.
3- Ghith, E. S., & Tolba, F. A. A. (2022, March). Real-Time Implementation of Tuning PID Controller Based on Whale Optimization Algorithm for Micro-robotics System. In 2022 14th International Conference on Computer and Automation Engineering (ICCAE) (pp. 103-109). IEEE.
4- Ghith, E. S., & Tolba, F. A. A. (2022). Design and Optimization of PID Controller using Various Algorithms for Micro-Robotics System. Journal of Robotics and Control (JRC), 3(3), 244-256.
5- Ghith, E. S., & Tolba, F. A. A. (2022). LabVIEW Implementation of Tuning PID Controller Using Advanced Control Optimization Techniques for Micro-robotics System. International Journal of Mechanical Engineering and Robotics Research, 11(9).
6- Ghith, E. S., & Tolba, F. A. A. (2022, May). Real-Time Implementation of an Enhanced PID CONTROLLER based on Marine Predator Algorithm (MPA) for Micro-robotics System. In 2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC) (pp. 40-45). IEEE.
⛄ Matlab代码关注
❤️部分理论引用网络文献,若有侵权联系博主删除