深度学习的介绍

简介: 目标:1.知道什么是深度学习2.知道深度学习和机器学习的区别3.能够说出深度学习的主要应用场景4.知道深度学习的常用框架

 


目录

1)深度学习的概念

2)深度学习和机器学习的区别

2.1 区别一:特征提取

2.2 区别二:数据依赖

2.3区别三:硬件依赖

2.4区别四:解决问题的方式

3) 深度学习应用场景

3.1 图像识别

3.2 自然语言的处理

3.3 语音技术

4)常见的深度学习框架


目标:

1.知道什么是深度学习

2.知道深度学习和机器学习的区别

3.能够说出深度学习的主要应用场景

4.知道深度学习的常用框架

1)深度学习的概念

深度学习(deep learning )是机器学习的分支,是一种以人工神经网络为架构,对数据进行特征学习的算法

2)深度学习和机器学习的区别

2.1 区别一:特征提取

特征工程就是我们在训练一个模型的时候,需要首先确定有哪些特征

1.在机器学习方法中,几乎所有的特征都需要通过行业专家在确定,然后手工就特征进行编码

2.而深度学习算法试图自己从数据中学习特征

深度学习好处:特征工程是一项十分繁琐、耗费很多人力物力的工作,深度学习的出现大大减少了发现特征的成本

2.2 区别二:数据依赖

image.gifimage.png

深度学习适合处理大数据(这就是为什么近年来为什么深度学习这么火),而数据量比较小的时候,用传统机器学习方法也许更合适

2.3区别三:硬件依赖

深度学习十分地依赖于高端的硬件设施,因为计算量实在太大了!深度学习中涉及很多的矩阵运算,因此很多深度学习都要求有GPU参与运算,因为GPU就是专门为矩阵运算而设计的。

相反,普通的机器学习随便给一台破电脑就可以跑。

2.4区别四:解决问题的方式

在解决问题时,传统机器学习算法通常先把问题分成几块,一个个地解决好之后,再重新组合起来。

但是深度学习则是一次性地、端到端地解决

3) 深度学习应用场景

3.1 图像识别

1.物体识别

2.场景识别

3.人脸检测跟踪

4.人脸身份认证

3.2 自然语言的处理

1.机器翻译(浏览器里的自动翻译)

2.文本识别

3.聊天对话

3.3 语音技术

1.语音识别

4)常见的深度学习框架

TensorFlow,Caffe2,Keras,Theano,Pytorch(本人现在用的就是这个)

TensorFlow Keras是Google家的(比较难上手)

入门推荐pytorch(火炬)


相关文章
|
4月前
|
机器学习/深度学习 传感器 监控
基于深度学习的感知和认知系统
基于深度学习的感知-认知系统结合了感知和认知两大核心模块,旨在为机器提供从数据采集、分析到决策制定的一整套能力。这种系统模仿人类的感知(如视觉、听觉)和认知(如推理、决策)过程,能够高效地感知复杂环境,并进行智能决策。
71 2
|
5月前
|
机器学习/深度学习 自然语言处理 自动驾驶
深度学习之知识推理与深度学习结合
基于深度学习的知识推理是将深度学习模型与传统的知识表示和推理技术相结合,以实现更加智能和高效的决策和预测能力。
86 2
|
6月前
|
机器学习/深度学习 自然语言处理 机器人
深度学习的应用
【7月更文挑战第30天】深度学习的应用
108 3
|
7月前
|
机器学习/深度学习 传感器 安全
|
7月前
|
机器学习/深度学习 自然语言处理 算法
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在许多领域都有广泛的应用
【5月更文挑战第11天】深度学习在许多领域都有广泛的应用
135 1
|
8月前
|
机器学习/深度学习 人工智能 算法
深度学习领域
【5月更文挑战第3天】深度学习领域
70 7
|
机器学习/深度学习 人工智能 自然语言处理
什么是深度学习?
人工智能-深度学习
156 0
什么是深度学习?
|
机器学习/深度学习 计算机视觉
深度学习资料总结
深度学习资料总结
|
机器学习/深度学习 算法 芯片
深度学习初识
深度学习初识
112 0