深度学习:CSPNet

简介: 深度学习:CSPNet

深度学习:CSPNet

前言

CSPNet 是作者 Chien-Yao Wang 于 2019 发表的论文 CSPNET: A NEW BACKBONE THAT CAN
ENHANCE LEARNING CAPABILITY OF CNN。也是对 DenseNet 网络推理效率低的改进版本。

解决的问题

  1. 由于在轻量级的网络下,他的精度会有所下降,CSPnet可以在维持足够精度的同时提升10%到20%的计算效率,同时可以应用于传统的 ResNet,ResNeXt,DenseNet等网络。
  2. 降低计算瓶颈。
  3. 降低内存资源。

Method

目前主流网络存在的问题

在这里插入图片描述

我们以DenseNet为例,如上图,我们上下两个分别为他们的推导公式,我们发现有很多以前的feature重复出现,在反向传播的过程中,网络会不断的学习这些相同的梯度,作者认为这些冗余feature会影响模型的性能,于是作者对网络做出了下面的改进。

Cross Stage Partial Network

在这里插入图片描述

如上图为作者作出的改进,作者首先把input 分成两部分,一部分经过了卷基层,另一部分什么也不做,然后在把这两个结果concat拼接。
总体而言,所提出的 CSPDenseNet 保留了 DenseNet 特征重用特性的优势,但同时通过截断梯度流来防止过多的重复梯度信息。这个想法是通过设计分层特征融合策略并在局部transition层中使用来实现的。

Partial Dense Block

设计局部dense block的优点是:

  1. 增加梯度路径:通过拆分合并策略,梯度路径的数量可以增加一倍。由于采用了跨阶段策略,可以缓解使用显式特征图副本进行concatenation带来的缺点;
  2. 平衡每层的计算:通常,DenseNet 的base layer中的通道数远大于growth rate(注:DenseNet的超参数,值为dense block中dense卷积层的卷积核个数)。由于在一个局部dense block中参与dense层操作的base layer通道只占原始数量的一半,因此可以有效解决近一半的计算瓶颈(注:解决近一半的计算瓶颈是通过拆分输入通道实现,拆分各一半,一半传入dense block,一半直接传到dense block后);
  3. 减少内存流量:假设 DenseNet 中一个dense block的基本特征图大小为w × h × c,growth rate为 dd,总共有 m 个dense层。那么,那个dense block的CIO(Convolutional Input/Output)是( c × m ) + ( ( m ^ 2 + m ) × d ) / 2 。虽然 m 和 d 通常远小于 c,但局部dense block最多可以节省网络一半的内存流量。

Partial Transition Layer

在DenseNet中,Trainsition layer起到了特征融合的作用,在这里,作者采取了4中不同的融合策略进行试验如下图:
在这里插入图片描述
通过实验,最终作者选取了第三种方案,这种方案速度更快,精度更高。

Exact Fusion Model

实验

在这里插入图片描述

目录
相关文章
|
PyTorch 算法框架/工具
Pytorch学习笔记(六):view()和nn.Linear()函数详解
这篇博客文章详细介绍了PyTorch中的`view()`和`nn.Linear()`函数,包括它们的语法格式、参数解释和具体代码示例。`view()`函数用于调整张量的形状,而`nn.Linear()`则作为全连接层,用于固定输出通道数。
756 0
Pytorch学习笔记(六):view()和nn.Linear()函数详解
|
缓存 API 定位技术
使用Python调用百度地图API实现地址查询
使用Python调用百度地图API实现地址查询
902 0
|
机器学习/深度学习 编解码 数据可视化
【即插即用】涨点神器AFF:注意力特征融合(已经开源,附论文和源码链接)
【即插即用】涨点神器AFF:注意力特征融合(已经开源,附论文和源码链接)
6311 1
|
算法 数据库 计算机视觉
Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
|
机器学习/深度学习 算法 数据挖掘
YOLOv6 | 模型结构与训练策略详细解析
YOLOv6 | 模型结构与训练策略详细解析
2363 0
YOLOv6 | 模型结构与训练策略详细解析
|
2月前
|
Ubuntu 数据安全/隐私保护 网络架构
Ubuntu系统的几种上网方式,Ubuntu安装后如何联网?
在Ubuntu系统中联网需要进行一些简单的设置和配置。我们需要确保我们的网络硬件已经被正确地识别和安装,我们的系统软件已经被更新,我们的网络连接已经被正确地配置。
|
8月前
|
机器学习/深度学习 资源调度 算法
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
YOLOv11改进策略【损失函数篇】| 引入Soft-NMS,提升密集遮挡场景检测精度,包括GIoU-NMS、DIoU-NMS、CIoU-NMS、SIoU-NMS、 EIou-NMS
3297 6
|
11月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
11月前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力本文介绍了一种高效的视觉变换器——DilateFormer,通过多尺度扩张注意力(MSDA)模块,在保持高性能的同时显著降低计算成本。MSDA通过在滑动窗口内模拟局部和稀疏的块交互,实现了多尺度特征聚合。实验结果显示,DilateFormer在ImageNet-1K分类、COCO对象检测/实例分割和ADE20K语义分割任务上均取得了优异的性能,且计算成本比现有模型减少70%。
【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
1803 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点