Hugging Face发布diffuser模型AI绘画库初尝鲜!

简介: 本文讲解 Hugging Face 发布的专注于 diffuser 模型的开源库,仅仅通过几行代码就开始生成自己的艺术作画,并对比相同文本提示下各大厂商业产品生成的结果。
143a05b90be04f7c816b08fe943b618a~tplv-k3u1fbpfcp-zoom-1.image
💡 作者: 韩信子@ ShowMeAI
📘 深度学习实战系列https://www.showmeai.tech/tutorials/42
📘 TensorFlow 实战系列https://www.showmeai.tech/tutorials/43
📘 本文地址https://www.showmeai.tech/article-detail/312
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容
69dc3270c6cf40e88f2f60d7401db4cc~tplv-k3u1fbpfcp-zoom-1.image

工具库 transformers 的开源方 Hugging Face 刚刚发布了一个用于构建 diffuser 模型的全新库。如果您不知道diffuser模型是什么,你可以查看 ShowMeAI 的另外一篇文章介绍 📘 你给文字描述, AI 艺术作画,精美无比!附源码,快来试试!

随着 AI 技术的发展,我们现在在互联网上看到的那些美丽、富有创意、极具艺术美感的绘画与视频,很多是来自 AI 之手!典型的AI艺术创作例如 OpenAI 的 DALL-E2、谷歌的 Imagen 和 Midjourney 的产品,所有这些产品服务都使用 diffuser 模型,下图为一些创作结果。

ec4c416b49024ea38f4440df20350224~tplv-k3u1fbpfcp-zoom-1.image

Hugging Face 发布了一个专注于 diffuser 模型的开源库,我们可以基于它,仅仅通过几行代码就开始生成自己的艺术作画。不过这个 diffuser 库是一个基础实现版本,训练和学习的数据也没有上面提到的几个大厂商业产品多,在本篇文章中,ShowMeAI 就带大家来探索新库,并生成一些我们自己的艺术画作,也对比一下相同文本提示下的大厂商业产品生成的结果。

💡 快速尝鲜

我们先在命令行通过 pip install diffusers 安装本次使用到的工具库,然后导入我们需要用到的模块和功能(在这里我们调用整个扩散模型流水线 DiffusionPipeline),并且我们导入一个小型预训练模型ldm-text2im-large-256

from diffusers import DiffusionPipeline

model_id = "CompVis/ldm-text2im-large-256"

# 预训练模型
ldm = DiffusionPipeline.from_pretrained(model_id)

接着我们就可以基于这个预训练模型作画啦,我们唯一需要做的事情就是给模型一句文本提示(在 diffuser 模型里叫 prompt 提示)。下面我们尝试生成一幅『松鼠吃香蕉』的画作。

# 给定文本提示和作画
prompt = "A painting of a squirrel eating a banana"
images = ldm([prompt], num_inference_steps=50, eta=.3, guidance_scale=6)
images[0]
0ab7d7e6afcd42349c826b59bc8628df~tplv-k3u1fbpfcp-zoom-1.image

上面就是模型最终生成的图像,当然受限于我们的计算资源和预训练模型大小,我们生成的图像不像 DALL-E 2 那样令人惊艳,但是我们仅仅用 5 行代码也生成了一副和提示文本匹配的图像,还是很让人感觉神奇。

下面是『松鼠吃香蕉』的另一幅画:

images = ldm(
    [prompt],
    num_inference_steps=100,
    eta=.3,
    guidance_scale=6
)
images['sample'][0]
8baba137fd0243168afd36daf520b6d8~tplv-k3u1fbpfcp-zoom-1.image

💡 文本提示

📌 高分辨率

自三大扩散模型(DALL-E 2、Imagen 和 Midjourney)发布以来,大家都开始发挥想象力,尝试各种各样的文本提示,让模型生成艺术图。例如,许多人发现添加『4K画质』或『在Unity中渲染』可以增强三巨头生成的图像的真实感(尽管它们都没有以 4K 分辨率生成)。

如果我们对 Hugging Face 的 diffuser 模型进行同样的尝试,会发生什么?

prompt = "a photorealistic image of a squirrel eating a banana"
images = ldm(
    [prompt],
    num_inference_steps=100,
    eta=.3,
    guidance_scale=6
)
images['sample'][0]
96de856546d14c9eab222e082e561dd1~tplv-k3u1fbpfcp-zoom-1.image
6472bd80f0f74061a540076ef262bc89~tplv-k3u1fbpfcp-zoom-1.image
a11a01e0f71e43359c9c3421c0daa6c2~tplv-k3u1fbpfcp-zoom-1.image

很显然它还不能生成高清的 4K 图,但是图像中的一些细节有丰富一些。

📌 场景与逻辑

我们把场景做得复杂一点点,比如给到的文本提示中,有不同的物体和位置关系,我们看看会生成什么样的结果,提示文字为an italian person eating pizza on top of the colosseum in rome

prompt = "an italian person eating pizza on top of the colosseum in rome"
images = ldm(
    [prompt],
    num_inference_steps=100,
    eta=.3,
    guidance_scale=6
)
images['sample'][0]
a38e215440ab486380b3ba5fe5ada853~tplv-k3u1fbpfcp-zoom-1.image

看得出来,这个简单的 diffuser 模型在很努力地复现我们文本中提到的人、斗兽场、披萨,但是对于更细节的位置关系,似乎它还没有做得非常好,这里的人并没有坐在罗马斗兽场顶部,而且斗兽场的拱门颜色和天空颜色也不完全匹配。

📌 更抽象的情况

回到松鼠,尝试生成更抽象的图像,例如 a giant squirrel destroying a city『一只巨大的松鼠摧毁一座城市』,我们随机采样了一些结果如下,好坏参半:

prompt = "a giant squirrel destroying a city" 
images = ldm(
    [prompt],
    num_inference_steps=100,
    eta=.3,
    guidance_scale=6
)
images['sample'][0]
abb452c5e35d41c88c210206ee1f5ad5~tplv-k3u1fbpfcp-zoom-1.image
prompt = "a giant squirrel destroying a city"
images = ldm(
    [prompt],
    num_inference_steps=50,
    eta=.3,
    guidance_scale=6
)
images['sample'][0]
de77cebe69f9498c8601a0149d0ff505~tplv-k3u1fbpfcp-zoom-1.image
prompt = "a giant squirrel destroying a city"
images = ldm(
    [prompt],
    num_inference_steps=100,
    eta=.3,
    guidance_scale=2
)
images['sample'][0]
8298c7818ba54e02a8d410f258436ccb~tplv-k3u1fbpfcp-zoom-1.image

我们似乎观察到,目前这个小模型似乎很难融合两个通常相关度没那么高的概念,即『(巨型)松鼠』和『城市』。我们从一些生成的效果不是特别好的图片可以观察出这一点,下面的结果中,要么对城市与天际线做了很好的描述却忽略了松鼠,要么对松鼠和自然环境做了很好的描述,却没有特别强的城市背景:

prompt = "a landscape image showing a giant squirrel destroying a city"
images = ldm(
    [prompt],
    num_inference_steps=50,
    eta=.8,
    guidance_scale=2
)
images['sample'][0]
1460dea771f14737a00bdbb35fdae02b~tplv-k3u1fbpfcp-zoom-1.image
prompt = "a landscape image showing a giant squirrel destroying a city"
images = ldm(
    [prompt],
    num_inference_steps=50,
    eta=.8,
    guidance_scale=2
)
images['sample'][0]
b5d3301646924d12a7d0fd0331b01736~tplv-k3u1fbpfcp-zoom-1.image

多次运行这些提示后,我们发现当前这个小模型下,总是在主体之间切换但很难将两者融合在一起。

💡 DALL-E 2的结果

我们把同样的内容"a dramatic shot of a giant squirrel destroying a modern city"灌给 DALL-E 2 ,让它从提示做图,得到的结果如下:

4be3e98615ca4363a98c29b3b290cb9e~tplv-k3u1fbpfcp-zoom-1.image

果然在更庞大的AI模型下,生成的结果更自然,也能把不同的细节关联起来。

💡 总结

这就是 Hugging Face 新库的初尝鲜!尽管目前开源的小模型上,还有一系列的问题,但是这类模型就像一把钥匙,解锁一些令人敬畏的人工智能类人的艺术创造水平。

短期看,这个小小的预训练模型当然无法取代 DALL-E 2、Imagen 或 Midjourney,但随着开源社区的强大,它会表现越来越好。

参考资料

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
相关文章
|
2天前
|
人工智能 自然语言处理 测试技术
巨擘之舞:探索AI大模型的发展历程与特性比较
巨擘之舞:探索AI大模型的发展历程与特性比较
|
6天前
|
机器学习/深度学习 人工智能 算法
AI - 决策树模型
决策树算法起源于古希腊的逻辑推理,20世纪在军事策略研究中首次提出。它通过构建树形模型模拟决策过程,每个节点代表一个属性判断,分支代表可能结果。ID3算法基于信息增益,C4.5则引入信息增益率,解决了ID3偏好多值属性的问题,还能处理缺失值。CART决策树适用于分类和回归任务,使用基尼系数或信息增益来选择特征。在Python的`sklearn`库中,`DecisionTreeClassifier`实现决策树分类,通过参数如`criterion`、`max_depth`等控制模型。
|
6天前
|
机器学习/深度学习 资源调度 算法
AI-逻辑回归模型
逻辑回归是一种用于分类问题的统计模型,尤其适合二分类任务,如预测广告点击率、判断邮件是否为垃圾邮件、评估疾病风险和预测信用卡违约等。模型通过线性方程(logit函数)结合Sigmoid函数将结果映射到0到1区间,表示概率。损失函数通常使用交叉熵,优化时常用梯度下降。评估指标包括ROC曲线和AUC,后者衡量模型整体性能,值越接近1表示性能越好。在不平衡数据集上,可使用`class_weight='balanced'`来调整样本权重。
|
6天前
|
机器学习/深度学习 算法 大数据
AI-线性回归模型(二)
这篇内容介绍了梯度下降法在机器学习中的应用,特别是在线性回归中的角色。它是一种迭代优化算法,用于找到损失函数最小值的参数。全梯度下降(FGD)使用所有数据计算梯度,适合大数据但计算成本高;随机梯度下降(SGD)随机选取样本,速度快但可能收敛到局部最小值。随机平均梯度下降(SAG)结合两者的优点,提高收敛速度。评估线性回归模型的性能通常使用平均绝对误差、均方误差和均方根误差。文中还展示了波士顿房价预测案例,使用SGDRegressor进行训练,并讨论了学习率的影响。最后提到了如何使用`joblib`库保存和加载模型。
|
2天前
|
机器学习/深度学习 人工智能 算法
OpenAI发布全新AI视频模型Sora:引领视频创作新纪元
OpenAI发布全新AI视频模型Sora:引领视频创作新纪元
|
6天前
|
机器学习/深度学习 API Python
AI-线性回归模型(一)
线性回归是用于分析变量间线性关系的统计方法,常见于房价预测、销售额预测和贷款额度评估。通过最小二乘法寻找最佳直线方程y=wx+b,其中y是因变量,x是自变量,w和b是模型参数。在Python的`sklearn`库中,使用`LinearRegression`类可构建模型,通过`fit`训练和`predict`进行预测。损失函数通常用平方损失(均方误差)衡量预测误差,优化目标是最小化这些误差的平方和。
|
2天前
|
机器学习/深度学习 人工智能 算法
【让AI写高考AI话题作文】看各大模型的回答
【让AI写高考AI话题作文】看各大模型的回答
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
AI大模型的核心成功因素通常可以归结为三大要素:大数据、大算力和强算法。
AI大模型的核心成功因素通常可以归结为三大要素:大数据、大算力和强算法。
23 0
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
AI大模型的核心
AI大模型的核心
15 0
|
7天前
|
人工智能 自然语言处理 测试技术
通义灵码评测: 阿里云出品通义大模型AI代码编程辅助工具
通义灵码是阿里云出品的一款基于通义大模型的AI智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力,并针对阿里云 SDK/OpenAPI 的使用场景调优,助力开发者高效、流畅的编码。
224 0