AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)

简介: AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)

大家好,我是风雨无阻。


通过前面几篇AI 绘画Stable Diffusion 研究系列的介绍,我们完成了Stable Diffusion整合包的安装、模型ControlNet1.1 安装、模型种类介绍与安装,相信看过教程的朋友们,手上已经有可以操作实践的Stable Diffusion 环境了。


那么本篇文章将给大家带来 Stable Diffusion 最重要也是使用最多的文生图功能介绍,由于内容比较多,这里会分成上、下两篇文章进行介绍。


今天为大家带来的是 AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)。


大家进入到web ui 页面后,首先看到的是下面这个界面。



上图一目了然的标注了文生图界面大致的功能。

接下来,就详细讲解一下每个功能的使用方法和注意事项。


1、模型选择区域

模型对于 SD 绘图来说非常重要,不同的模型类型、质量会很大程度的决定最终的出图效果。


2、功能栏

包括了常见的 文生图、图生图、后期处理等常用功能。不同的功能页面也不同,在这里,我们先针对经常使用的文生图模块页面来进行讲解。


3、正向提示词

正向提示词prompt &tag**: 如果大家使用过 ChatGPT 就应该知道 Prompt 是什么。说的直白点就是我们想让 SD 帮忙生成什么样的图的描述,比如角色或场景等,**需要使用英文进行描述


正向Prompt &Tag 改善画质用的 Tag ,适用于二次元风格,可以考虑搭配不同的模型使用:

(masterpiece:1.2), best quality, masterpiece, highres, original, extremely detailed wallpaper.oerfect lighting,(extremely detailed CG:1.2), drawing, paintbrush


4、反向提示词

反向提示词 Prompt&Tag : 就是告诉SD 生成图里 ,不想出现的内容, 需要使用英文进行描述


通用反面 Tag,保底不出古神用的 Tag,适用于二次元风格,可以考虑搭配不同的模型使用:

NSFW, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality,(monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, (ugly:1.331),duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:l.331), mutated hands, (poorly drawnands:1.5), blurry, (bad anatomy:1.21), (bad proportions:1.331), extra limbs, (disfigured:1.331),missing arms:1.331), (extra legs:1.331), (fused fingers:1.61051), (too many fingers:1.61051),unclear eyes:1.331), lowers, bad hands, missing fingers, extra digit,bad hands, missing fingers.((extra arms and legs)))


5、生成按钮

调整完其他设置后,点击生成,开始生成图片,也可以不做调整。


6、采样迭代步数

AI 绘画的过程是将纯噪点图,变为高清图的一个过程,采样迭代步数,就是这个过程需要的步数,随着步数的增加,图片的细节也不断增多。


采样迭代步数不能设置太小,也不能设置太大。设置太小,图片效果就不好;设置太大, 生成图花的时间就越长,如果超过40 步以后,那么画面的变化是基本看不出来。


采样迭代步数,推荐 20-30 之间,通常28是一个不错的值。


7、采样方法

采用什么样的绘画方式算法,以及“画多少笔” 来绘图,一定程度上决定出图的质量。

以下是 每个采样方法,对应生成步数的效果。


如图:





综合以上参考,根据出图质量、采样步数的对比,对于新手朋友来说 推荐无脑使用:DPM adaptive 采样方法


8、出图显示区域

9、出图大小

出图大小 :默认 512**512 像素 ,因为模型训练时,都是使用这个尺寸,因此效果最好,所以一般保持默认即可,当然如果要出 3:2 的图,也可以设置为: 512* 768 , 768*512 。

根据自己的需要进行调整,也可以不用调整。出图越大,对于显卡要求越高。


10、出图数量

出图数量=总批次数x每批数量。

每批的数量越多:需要的显存越大。

总批次越多:根据实际经验,生成的图片质量要好一些,但是花的时间越长。

可根据自己的需求和电脑配置进行选择。


11、出图存储目录

可以查找历史出图


12、随机种子

模仿别人的图,需要进行调整,一般不用调整。


13、面部修复

面部修复,首先需要在设置中,按如下选项进行设置 :



然后依次点击:保存设置,重载前端,让其生效:


14、高分辨率修复

因为我们出图是512*512, 如果要放大,比如1024x1024 ,就需要勾选高分辨率修复功能。


A、放大算法选择推荐

真实风格推荐选择:R-ESRGAN 4x+


动漫风格推荐选择:R-ESRGAN 4x+ Anim


B、放大倍数

根据电脑配置进行选择

显卡显存高 选择 2-3倍

显卡显存不高,选择1.5-2倍


15、提示词引导系数(CFD Scale):

提示词引导系数,是控制提示词与生成的图像相关性 ,可以理解为 “越小AI越自由发挥” ,一般推荐数值为5-15之间,默认为 7 。

如果数值太大,会出现锐化、线条变粗的效果;

如果太小AI就自由发挥了,不看 Tag, 同时图像的饱和度也会偏低。


参考以下对比图:



16、随机种子:

随机种子是生成过程中所有随机性的源头, 每个种子都是一幅不一样的画。

默认的 -1 是代表每次都换一个随机种子,生成的每张图就不同。由随机种子,生成了随机的噪声图,再交给AI进行画出来。

使用固定的随机种子 ,可控制生成图与之前的图更相似。


17、保存

针对部署到本地的,意义不大。

如果针对部署到服务器上的,点击保存后,就可以下载。


18、打包下载

生成多张图的时候,图片会打包到压缩包内,就可以下载,本地基本用不到。


19、发送到图生图、发送到重绘、发送到后期处理,这三个功能,这里就先不做介绍。后边介绍图生图功能的时候再做详细说明。


20、图标功能介绍


图标1: 箭头 从提示词或上次生成的图片中,读取生成参数。

图标2: 清空提示词

图标3: 快捷显示隐藏扩展模型

图标4: 预设样式,保存反向提示词。


21、Tag 加权、减权用法简单说明

大家可能会经常看到别人发的 Tag 里面会有一些符号?比如大小括号等等。这些属于进阶用法,这里仅仅简单提及一下。

这里以 Tree 这个 Tag 作为例子进行说明。

(Tree) : 加权重,这是1.1倍。

((Tree)) :括号叠加,这是 1.1*1.1=1.21倍。

[Tree] :减权重,一般用的少。减权重也一般就用下面的指定倍数。

(Tree:1.5) 指定倍数,这里是1.5倍的权重,还可以 (Tree:0.9) 达到减权重的效果。


好了,今天的内容就到这里,下一篇将给大家详细讲解提示词的规则和写作技巧,敬请期待!



相关文章
|
4月前
|
人工智能 Linux API
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
Omnitool 是一款开源的 AI 桌面环境,支持本地运行,提供统一交互界面,快速接入 OpenAI、Stable Diffusion、Hugging Face 等主流 AI 平台,具备高度扩展性。
551 94
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
AutoGLM沉思:智谱AI推出首个能"边想边干"的自主智能体!深度研究+多模态交互,颠覆传统AI工作模式
AutoGLM沉思是由智谱AI推出的一款开创性AI智能体,它突破性地将深度研究能力与实际操作能力融为一体,实现了AI从被动响应到主动执行的跨越式发展。
237 16
AutoGLM沉思:智谱AI推出首个能"边想边干"的自主智能体!深度研究+多模态交互,颠覆传统AI工作模式
|
3月前
|
存储 人工智能 搜索推荐
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
Shandu 是一款开源的 AI 研究自动化工具,结合 LangChain 和 LangGraph 技术,能够自动化地进行多层次信息挖掘和分析,生成结构化的研究报告,适用于学术研究、市场分析和技术探索等多种场景。
366 8
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
|
3月前
|
机器学习/深度学习 人工智能 安全
Stable Diffusion 3.0 :一键开启你的AI绘画之旅
本文介绍了Stable Diffusion 3.0的主要优化,包括采用DiT架构提升多对象生成能力及“流匹配”技术加速采样。同时解决了部署复杂、显卡需求高等问题,可通过阿里云计算巢一键部署,实现即开即用。文章展示了人像、动漫风、科幻风等生成效果,并提供中文菜单设置与插件下载教程。无论是专业设计师还是普通用户,都能轻松开启智能创作新时代。 Flux模型支持即将上线,值得期待。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
通古大模型:古籍研究者狂喜!华南理工开源文言文GPT:AI自动断句+写诗翻译,24亿语料喂出来的学术神器
通古大模型由华南理工大学开发,专注于古籍文言文处理,具备强大的古文句读、文白翻译和诗词创作功能。
516 11
通古大模型:古籍研究者狂喜!华南理工开源文言文GPT:AI自动断句+写诗翻译,24亿语料喂出来的学术神器
|
4月前
|
传感器 人工智能 机器人
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
214 1
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
|
4月前
|
人工智能 自然语言处理 API
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
OpenDeepResearcher 是一款开源 AI 研究工具,支持异步处理、去重功能和 LLM 驱动的决策,帮助用户高效完成复杂的信息查询和分析任务。
304 18
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
|
1月前
|
开发框架 人工智能 Java
破茧成蝶:阿里云应用服务器让传统 J2EE 应用无缝升级 AI 原生时代
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
250 41
|
20天前
|
人工智能 数据挖掘
🔔阿里云百炼智能体和工作流可以发布为组件了,AI应用变成“搭积木”
本文介绍了如何通过智能体组件化设计快速生成PPT。首先,创建一个“PPT大纲生成”智能体并发布为组件,该组件可根据用户输入生成结构清晰的大纲。接着,在新的智能体应用中调用此组件与MCP服务(如ChatPPT),实现从大纲到完整PPT的自动化生成。整个流程模块化、复用性强,显著降低AI开发门槛,提升效率。非技术人员也可轻松上手,满足多样化场景需求。
🔔阿里云百炼智能体和工作流可以发布为组件了,AI应用变成“搭积木”
|
1月前
|
人工智能 数据挖掘 大数据
“龟速”到“光速”?算力如何加速 AI 应用进入“快车道”
阿里云将联合英特尔、蚂蚁数字科技专家,带来“云端进化论”特别直播。
78 11
下一篇
oss创建bucket