基于Astar算法实现飞行轨迹的三维规划附Matlab代码

简介: 基于Astar算法实现飞行轨迹的三维规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

飞行器的测量精度,航迹路径的合理规划,飞行器工作时的稳定性、安全性等这些变化对飞行器的综合控制系统要求越来越高。无人机航路规划是为了保证无人机完成特定的飞行任务,并且能够在完成任务的过程中躲避各种障碍、威胁区域而设计出最优航迹路线的问题。常见的航迹规划算法如图1所示。

图1 常见路径规划算法

文中主要对无人机巡航阶段的航迹规划进行研究,假设无人机在飞行中维持高度与速度不变,那么航迹规划成为一个二维平面的规划问题。在航迹规划算法中,A*算法计算简单,容易实现。在改进A*算法基础上,提出一种新的、易于理解的改进A*算法的无人机航迹规划方法。传统A*算法将规划区域栅格化,节点扩展只限于栅格线的交叉点,在栅格线的交叉点与交叉点之间往往存在一定角度的两个运动方向。将存在角度的两段路径无限放大、细化,然后分别用两段上的相应路径规划点作为切点,找到相对应的组成内切圆的圆心,然后作弧,并求出相对应的两切点之间的弧所对应的圆心角,根据下式计算出弧线的长度

式中:R———内切圆的半径;

α———切点之间弧线对应的圆心角。


**1 A*算法概述**

A*算法是在Dijstar算法的基础上引入的启发式函数,通过定义的代价函数来评估代价大小,从而确定最优路径。A*算法的代价函数

式中:f(x,y)———初始状态X0(x0,y0)到达目标状态X1(x1,y1)的代价估计;

g(x,y)———状态空间中从初始状态X0(x0,y0)到状态N(x1,y1)的实际代价;

h(x,y)———从状态N(x1,y1)到目标状态X1(x1,y1)最佳路径的估计代价。

要找到最短路径的实质是找到f(x,y)的最小值,其中在式(2)中寻找最短路径的关键在于求估计代价h (x,y)值。设系数λ表示状态N(x1,y1)到X1(x1,y1)最优距离,如果λ<h(x,y),搜索范围小,不能保证得到最优解;λ>h(x,y),搜索范围大,费时,但能找到最优解;λ=h(x,y),搜索到最短路径。其中h(x,y)一般用欧几里德距离(式(3))或者绝对值距离(式(4))计算。

A*算法是以起始点为中心,周围8个栅格的中心为下一步预选,并不断地计算预选位置的f(x,y)值,其中f(x,y)值最小的作为当前位置,依次逐层比较,直到当前位置的临近点出现目标点为止,其最小单元如图2所示。

图2 最小单元

A*算法的流程如下:

1)创建开始节点START,目标节点TARGET、OPEN列表、CLOSE列表、CLOSE列表初始为空;

2)将START加入到OPEN列表;

3)检查OPEN列表中的节点,若列表为空,则无可行路径;若不为空,选择使f(x,y)值最小的节点k;

4)将节点k从OPEN中去除,并将其添加到CLOSE中,判断节点k是否目标节点TARGET,若是,则说明找到路径;若不是,则继续扩展节点k,生成k节点的子节点集,设q为k的子节点集,对所有节点q计算相应的f(x,y)值,并选择f(x,y)值最小的节点,将该节点放入CLOSE列表中;

5)跳到3),直到算法获得可行路径或无解退出。

⛄ 部分代码

function  MakeData()

%%%%%%%%Make Data of Map%%%%%%%%

load ('TerrainData.mat');

%%%%%%Define The 2-D Map Array%%%%%

MAX_X = 100;

MAX_Y = 100;

MAX_Z = 50;

Cut_Data = Final_Data(301:400,101:200);

mesh(double(Cut_Data));

MAX_Final_Data = max(max(Cut_Data));

MIN_Final_Data = min(min(Cut_Data));

for i=1:100

   for j=1:100

       New_Data(i,j) = ceil((Cut_Data(i,j)-MIN_Final_Data)/100);

       Display_Data(i,j) = (Cut_Data(i,j)-MIN_Final_Data)/100;

   end

end

%%%%%%Map Matrix Initialization%%%%%%

MAP=2*(ones(MAX_X,MAX_Y,MAX_Z));

% Obtain Obstacle, Target and Robot Position

% Initialize the MAP with input values

% Obstacle=-1,Target = 0,Robot=1,Space=2

%%%%%%%Make Random Terrain Data%%%%%%%

for i=1:MAX_X

   for j=1:MAX_Y

       Z_UpData = New_Data(i,j);

       for z = 1:Z_UpData

           MAP(i,j,z) = -1;

       end

   end

end

CLOSED=[];

%Put all obstacles on the Closed list

k=1;%Dummy counter

for i=1:MAX_X

   for j=1:MAX_Y

       Z_UpData = New_Data(i,j);

       for z = 1:Z_UpData

           CLOSED(k,1)=i;

           CLOSED(k,2)=j;

           CLOSED(k,3)=z;

           k=k+1;

       end        

   end

end

%%%%%%%%%输入禁飞区信息

c2=size(CLOSED,1);

for i_z=1:20

   for i_x=1:100

       for i_y=1:100

           flag = 1;

           Length = (i_x-30)^2 + (i_y-30)^2;            

           for c1=1:c2

               if (i_x == CLOSED(c1,1) && i_y == CLOSED(c1,2) && i_z == CLOSED(c1,3))

                   flag = 0;

               end

           end

           if Length <= 25 & flag == 1

               CLOSED(c2+1,1)=i_x;

               CLOSED(c2+1,2)=i_y;

               CLOSED(c2+1,3)=i_z;

               c2 = c2+1;

           end

       end

   end

end

%%%%%%%%%输入异常气象区域信息

% k = 1;

% c3 = size(CLOSED,1);

% for i_z=1:10

%     for i_x=1:100

%         for i_y=1:100

%             flag = 1;

%             Length = (i_x-60)^2 + (i_y-30)^2;            

%             for c1=1:c3

%                 if (i_x == CLOSED(c1,1) && i_y == CLOSED(c1,2) && i_z == CLOSED(c1,3))

%                     flag = 0;

%                 end

%             end

%             if Length <= 56.25 & flag == 1

%                 Threaten_Weather(k,1)=i_x;

%                 Threaten_Weather(k,2)=i_y;

%                 Threaten_Weather(k,3)=i_z;

%                 k = k+1;

%             end

%         end

%     end

% end

save MapData MAX_X MAX_Y MAX_Z MAP CLOSED Final_Data Display_Data

⛄ 运行结果

⛄ 参考文献

[1]赵德群, 段建英, 陈鹏宇,等. 基于A*算法的三维地图最优路径规划[J]. 计算机系统应用, 2017, 26(7):7.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。

热门文章

最新文章