基于Astar算法实现飞行轨迹的三维规划附Matlab代码

简介: 基于Astar算法实现飞行轨迹的三维规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

飞行器的测量精度,航迹路径的合理规划,飞行器工作时的稳定性、安全性等这些变化对飞行器的综合控制系统要求越来越高。无人机航路规划是为了保证无人机完成特定的飞行任务,并且能够在完成任务的过程中躲避各种障碍、威胁区域而设计出最优航迹路线的问题。常见的航迹规划算法如图1所示。

图1 常见路径规划算法

文中主要对无人机巡航阶段的航迹规划进行研究,假设无人机在飞行中维持高度与速度不变,那么航迹规划成为一个二维平面的规划问题。在航迹规划算法中,A*算法计算简单,容易实现。在改进A*算法基础上,提出一种新的、易于理解的改进A*算法的无人机航迹规划方法。传统A*算法将规划区域栅格化,节点扩展只限于栅格线的交叉点,在栅格线的交叉点与交叉点之间往往存在一定角度的两个运动方向。将存在角度的两段路径无限放大、细化,然后分别用两段上的相应路径规划点作为切点,找到相对应的组成内切圆的圆心,然后作弧,并求出相对应的两切点之间的弧所对应的圆心角,根据下式计算出弧线的长度

式中:R———内切圆的半径;

α———切点之间弧线对应的圆心角。


**1 A*算法概述**

A*算法是在Dijstar算法的基础上引入的启发式函数,通过定义的代价函数来评估代价大小,从而确定最优路径。A*算法的代价函数

式中:f(x,y)———初始状态X0(x0,y0)到达目标状态X1(x1,y1)的代价估计;

g(x,y)———状态空间中从初始状态X0(x0,y0)到状态N(x1,y1)的实际代价;

h(x,y)———从状态N(x1,y1)到目标状态X1(x1,y1)最佳路径的估计代价。

要找到最短路径的实质是找到f(x,y)的最小值,其中在式(2)中寻找最短路径的关键在于求估计代价h (x,y)值。设系数λ表示状态N(x1,y1)到X1(x1,y1)最优距离,如果λ<h(x,y),搜索范围小,不能保证得到最优解;λ>h(x,y),搜索范围大,费时,但能找到最优解;λ=h(x,y),搜索到最短路径。其中h(x,y)一般用欧几里德距离(式(3))或者绝对值距离(式(4))计算。

A*算法是以起始点为中心,周围8个栅格的中心为下一步预选,并不断地计算预选位置的f(x,y)值,其中f(x,y)值最小的作为当前位置,依次逐层比较,直到当前位置的临近点出现目标点为止,其最小单元如图2所示。

图2 最小单元

A*算法的流程如下:

1)创建开始节点START,目标节点TARGET、OPEN列表、CLOSE列表、CLOSE列表初始为空;

2)将START加入到OPEN列表;

3)检查OPEN列表中的节点,若列表为空,则无可行路径;若不为空,选择使f(x,y)值最小的节点k;

4)将节点k从OPEN中去除,并将其添加到CLOSE中,判断节点k是否目标节点TARGET,若是,则说明找到路径;若不是,则继续扩展节点k,生成k节点的子节点集,设q为k的子节点集,对所有节点q计算相应的f(x,y)值,并选择f(x,y)值最小的节点,将该节点放入CLOSE列表中;

5)跳到3),直到算法获得可行路径或无解退出。

⛄ 部分代码

function  MakeData()

%%%%%%%%Make Data of Map%%%%%%%%

load ('TerrainData.mat');

%%%%%%Define The 2-D Map Array%%%%%

MAX_X = 100;

MAX_Y = 100;

MAX_Z = 50;

Cut_Data = Final_Data(301:400,101:200);

mesh(double(Cut_Data));

MAX_Final_Data = max(max(Cut_Data));

MIN_Final_Data = min(min(Cut_Data));

for i=1:100

   for j=1:100

       New_Data(i,j) = ceil((Cut_Data(i,j)-MIN_Final_Data)/100);

       Display_Data(i,j) = (Cut_Data(i,j)-MIN_Final_Data)/100;

   end

end

%%%%%%Map Matrix Initialization%%%%%%

MAP=2*(ones(MAX_X,MAX_Y,MAX_Z));

% Obtain Obstacle, Target and Robot Position

% Initialize the MAP with input values

% Obstacle=-1,Target = 0,Robot=1,Space=2

%%%%%%%Make Random Terrain Data%%%%%%%

for i=1:MAX_X

   for j=1:MAX_Y

       Z_UpData = New_Data(i,j);

       for z = 1:Z_UpData

           MAP(i,j,z) = -1;

       end

   end

end

CLOSED=[];

%Put all obstacles on the Closed list

k=1;%Dummy counter

for i=1:MAX_X

   for j=1:MAX_Y

       Z_UpData = New_Data(i,j);

       for z = 1:Z_UpData

           CLOSED(k,1)=i;

           CLOSED(k,2)=j;

           CLOSED(k,3)=z;

           k=k+1;

       end        

   end

end

%%%%%%%%%输入禁飞区信息

c2=size(CLOSED,1);

for i_z=1:20

   for i_x=1:100

       for i_y=1:100

           flag = 1;

           Length = (i_x-30)^2 + (i_y-30)^2;            

           for c1=1:c2

               if (i_x == CLOSED(c1,1) && i_y == CLOSED(c1,2) && i_z == CLOSED(c1,3))

                   flag = 0;

               end

           end

           if Length <= 25 & flag == 1

               CLOSED(c2+1,1)=i_x;

               CLOSED(c2+1,2)=i_y;

               CLOSED(c2+1,3)=i_z;

               c2 = c2+1;

           end

       end

   end

end

%%%%%%%%%输入异常气象区域信息

% k = 1;

% c3 = size(CLOSED,1);

% for i_z=1:10

%     for i_x=1:100

%         for i_y=1:100

%             flag = 1;

%             Length = (i_x-60)^2 + (i_y-30)^2;            

%             for c1=1:c3

%                 if (i_x == CLOSED(c1,1) && i_y == CLOSED(c1,2) && i_z == CLOSED(c1,3))

%                     flag = 0;

%                 end

%             end

%             if Length <= 56.25 & flag == 1

%                 Threaten_Weather(k,1)=i_x;

%                 Threaten_Weather(k,2)=i_y;

%                 Threaten_Weather(k,3)=i_z;

%                 k = k+1;

%             end

%         end

%     end

% end

save MapData MAX_X MAX_Y MAX_Z MAP CLOSED Final_Data Display_Data

⛄ 运行结果

⛄ 参考文献

[1]赵德群, 段建英, 陈鹏宇,等. 基于A*算法的三维地图最优路径规划[J]. 计算机系统应用, 2017, 26(7):7.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关文章
|
4小时前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
4小时前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
4小时前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
8 1
|
4小时前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
4小时前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
15 1
|
4小时前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
4小时前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
4小时前
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
4小时前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
|
4小时前
|
运维 算法
基于改进遗传算法的配电网故障定位(matlab代码)
基于改进遗传算法的配电网故障定位(matlab代码)