预约直播 | 基于深度学习的稀疏模型训练 GPU 加速

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云AI技术分享会第六期《基于深度学习的稀疏模型训练 GPU 加速》将在2022年10月19日晚18:00开启直播,精彩不容错过!

banner1.jpg一、分享议题:

基于深度学习的稀疏模型训练 GPU 加速

二、直播时间:

2022年10月19日(周三)18:00-18:40

三、 议题介绍:

随着稀疏模型越来越深,越来越宽,如何使用 GPU 加速稀疏模型的训练过程受到广泛的关注。HybridBackend 框架通过对稀疏数据处理、稀疏计算和分布式训练策略上的多重优化,大幅提升了 GPU集群单位成本下的训练吞吐性能,并在阿里巴巴集团内外多个业务落地。  

四、听众收益:

  • 稀疏模型训练 GPU 加速的主要挑战
  • HB框架的目标与主要工作
  • HB框架 v0.7 版本功能介绍
  • HB框架在公有云上的成功案例
  • HB框架训练加速效果示例演示

海报1.jpg

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
6
2
1
3609
分享
相关文章
谷歌开源量化模型 Gemma 3 QAT:显存需求直降75%,消费级GPU轻松跑大模型!
Gemma 3 QAT是谷歌最新推出的量化优化开源模型,通过量化感知训练技术显著降低显存需求,同时保持高性能,使大模型能在消费级硬件上高效运行。
124 21
谷歌开源量化模型 Gemma 3 QAT:显存需求直降75%,消费级GPU轻松跑大模型!
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。
657 100
容器计算服务ACS单张GPU即可快速搭建QwQ-32B推理模型
阿里云最新发布的QwQ-32B模型拥有320亿参数,通过强化学习大幅度提升了模型推理能力,其性能与DeepSeek-R1 671B媲美,本文介绍如何使用ACS算力部署生产可用的QwQ-32B模型推理服务。
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
100 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
Proxy Lite 是一款开源的轻量级视觉语言模型,支持自动化网页任务,能够像人类一样操作浏览器,完成网页交互、数据抓取、表单填写等重复性工作,显著降低自动化成本。
307 11
Proxy Lite:仅3B参数的开源视觉模型!快速实现网页自动化,支持在消费级GPU上运行
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
MiniMind 是一个开源的超小型语言模型项目,帮助开发者以极低成本从零开始训练自己的语言模型,最小版本仅需25.8M参数,适合在普通个人GPU上快速训练。
425 10
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
轻量级AI革命:无需GPU就能运算的DeepSeek-R1-1.5B模型及其低配部署指南
随着AI技术发展,大语言模型成为产业智能化的关键工具。DeepSeek系列模型以其创新架构和高效性能备受关注,其中R1-1.5B作为参数量最小的版本,适合资源受限场景。其部署仅需4核CPU、8GB RAM及15GB SSD,适用于移动对话、智能助手等任务。相比参数更大的R1-35B与R1-67B+,R1-1.5B成本低、效率高,支持数学计算、代码生成等多领域应用,是个人开发者和初创企业的理想选择。未来,DeepSeek有望推出更多小型化模型,拓展低资源设备的AI生态。
250 8
COMET:字节跳动开源MoE训练加速神器,单层1.96倍性能提升,节省百万GPU小时
COMET是字节跳动推出的针对Mixture-of-Experts(MoE)模型的优化系统,通过细粒度的计算-通信重叠技术,显著提升分布式训练效率,支持多种并行策略和大规模集群部署。
114 9
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
Unsloth 是一款开源的大语言模型微调工具,支持 Llama-3、Mistral、Phi-4 等主流 LLM,通过优化计算步骤和手写 GPU 内核,显著提升训练速度并减少内存使用。
425 3
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟

热门文章

最新文章

相关产品

  • 人工智能平台 PAI
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等