【智能优化算法-灰狼算法】基于Cat混沌与高斯变异的灰狼优化算法求解单目标优化问题附Matlab代码

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【智能优化算法-灰狼算法】基于Cat混沌与高斯变异的灰狼优化算法求解单目标优化问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

针对基本灰狼优化算法在求解复杂问题时同样存在依赖初始种群,过早收敛,易陷入局部最优等缺点,提出一种改进的灰狼优化算法应用于求解函数优化问题中.该算法首先利用混沌Cat映射产生灰狼种群的初始位置,为算法全局搜索过程的种群多样性奠定基础;同时引入粒子群算法中的个体记忆功能以便增强算法的局部搜索能力和加快其收敛速度;最后采用高斯变异扰动和优胜劣汰选择规则对当前最优解进行变异操作以避免算法陷入局部最优.对13个基准测试函数进行仿真实验,结果表明,与基本GWO算法,PSO算法,GA算法以及ACO算法相比,该算法具有更好的求解精度和更快的收敛速度.

⛄ 部分代码

%___________________________________________________________________%

%  Grey Wolf Optimizer (GWO) source codes version 1.0               %

%                                                                   %

%  Developed in MATLAB R2011b(7.13)                                 %

%                                                                   %

%  Author and programmer: Seyedali Mirjalili                        %

%                                                                   %

%         e-Mail: ali.mirjalili@gmail.com                           %

%                 seyedali.mirjalili@griffithuni.edu.au             %

%                                                                   %

%       Homepage: http://www.alimirjalili.com                       %

%                                                                   %

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

%               DOI: 10.1016/j.advengsoft.2013.12.007               %

%                                                                   %

%___________________________________________________________________%

% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop

while l<Max_iter

   for i=1:size(Positions,1)  

       

      % Return back the search agents that go beyond the boundaries of the search space

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;              

       

       % Calculate objective function for each search agent

       fitness=fobj(Positions(i,:));

       

       % Update Alpha, Beta, and Delta

       if fitness<Alpha_score

           Alpha_score=fitness; % Update alpha

           Alpha_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness<Beta_score

           Beta_score=fitness; % Update beta

           Beta_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score

           Delta_score=fitness; % Update delta

           Delta_pos=Positions(i,:);

       end

   end

     

   a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0

   

   % Update the Position of search agents including omegas

   for i=1:size(Positions,1)

       for j=1:size(Positions,2)    

                     

           r1=rand(); % r1 is a random number in [0,1]

           r2=rand(); % r2 is a random number in [0,1]

           

           A1=2*a*r1-a; % Equation (3.3)

           C1=2*r2; % Equation (3.4)

           

           D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

           X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

                     

           r1=rand();

           r2=rand();

           

           A2=2*a*r1-a; % Equation (3.3)

           C2=2*r2; % Equation (3.4)

           

           D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

           X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2      

           

           r1=rand();

           r2=rand();

           

           A3=2*a*r1-a; % Equation (3.3)

           C3=2*r2; % Equation (3.4)

           

           D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

           X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3            

           

           Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

           

       end

   end

   l=l+1;    

   Convergence_curve(l)=Alpha_score;

end

⛄ 运行结果

image.gif编辑

image.gif编辑

⛄ 参考文献

[1]徐辰华, 李成县, 喻昕,等. 基于Cat混沌与高斯变异的改进灰狼优化算法[J]. 计算机工程与应用, 2017, 53(4):10.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
16天前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
19天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
25天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
25天前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
|
15天前
|
机器学习/深度学习 算法 物联网
基于遗传方法的动态多目标优化算法
基于遗传方法的动态多目标优化算法
|
25天前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
|
25天前
|
机器学习/深度学习 分布式计算 算法
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
114 0
|
25天前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
|
29天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
29天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
150 14

热门文章

最新文章