协同过滤做商品推荐
本文的业务场景如下:
通过一份7月份前的用户购物行为数据,获取商品的关联关系,对用户7月份之后的购买形成推荐,并评估结果。比如用户甲某在7月份之前买了商品A,商品A与B强相关,我们就在7月份之后推荐了商品B,并探查这次推荐是否命中。<br />数据源:购物数据<br />数据大小:328 KB<br />字段数量:4<br />使用组件:过滤与映射,SQL脚本,读数据表,JOIN<br />
阿里巴巴大数据产品最新特性介绍--机器学习PAI
本文重点介绍了机器学习PAI中自定义算法上传、数加智能生态市场、AutoML2.0自动调参以及AutoLearning自动学习等新功能特性。此外,作者通过对机器学习PAI整体框架及功能发展的梳理,使老用户对PAI产品框架有更深刻的理解,同时帮助新用户对PAI产品有一个整体的认知。
谷歌大规模机器学习:模型训练、特征工程和算法选择 (32PPT下载)
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A
谷歌大规模机器学习:模型训练、特征工程和算法选择 (32PPT下载)
2017-01-26 新智元
1新智元编译
来源:ThingsExpo、Medium
作者:Natalia Ponomareva、Gokula Krishnan Santhanam
整理&编译:刘小芹、李静怡、胡祥杰
新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金、高瓴智成、蓝湖资本 、蓝象资本、今日头条跟投。
千亿特征流式学习在大规模推荐排序场景的应用
2017云栖大会机器学习平台PAI专场,阿里巴巴高级技术专家陈绪带来千亿特征流式学习在大规模推荐排序场景的应用的演讲。主要从电商个性化推荐开始谈起,进而描述了技术挑战和PAI解决方案,重点分享了鲲鹏框架和算法调优,最好作了简要总结。
揭秘工业级大规模GNN图采样
互联网下的图数据纷繁复杂且规模庞大,如何将GNN应用于如此复杂的数据上呢?答案是图采样。结合阿里巴巴开源的GNN框架Graph-Learn(https://github.com/alibaba/graph-learn),本文重点介绍GNN训练过程中的各种图采样和负采样技术。
《Scala机器学习》一一3.4 机器学习库
本节书摘来自华章出版社《Scala机器学习》一 书中的第3章,第3.4节,作者:[美] 亚历克斯·科兹洛夫(Alex Kozlov)著 ,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
教你实现双十一商品标签自动归类(附数据模板)
背景
双十一购物狂欢节刚刚过去,如果是网购老司机,一定清楚通常一件商品会有很多维度的标签来展示,比如一个鞋子,它的商品描述可能会是这样的“韩都少女英伦风系带马丁靴女磨砂真皮厚底休闲短靴”。如果是一个包,那么它的商品描述可能是“天天特价包包2016新款秋冬斜挎包韩版手提包流苏贝壳包女包单肩包”。