人工智能平台 PAI

首页 标签 人工智能平台 PAI
requirement.txt 管理python包依赖
在 Python 项目中,`requirements.txt` 用于记录依赖库及其版本,便于环境复现。本文介绍了多种生成该文件的方法:基础方法使用 `pip freeze`,进阶方法使用 `pipreqs`,专业方法使用 `poetry` 或 `pipenv`,以及手动维护方式。每种方法适用不同场景,涵盖从简单导出到复杂依赖管理,并提供常见问题的解决方案,帮助开发者高效生成精准的依赖列表,确保项目环境一致性。
【DSW Gallery】COMMON_IO使用指南
COMMON_IO模块提供了TableReader和TableWriter两个接口,使用TableReader可以读取ODPS Table中的数据,使用TableWriter可以将数据写入ODPS Table。
图解机器学习 | 聚类算法详解
聚类是最常见的无监督学习算法。本文讲解聚类问题常见算法及用途,包括划分聚类的K-Means算法、K-Medoids算法,层次聚类的Single-Linkage 算法、Complete-Linkage算法,和DB-SCAN算法。
机器学习PAI常见问题之安装pyalink卡在qtconsole 4.0如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Coder模型
Qwen3-Coder 是通义千问最新开源的 AI 编程大模型正式开源,拥有卓越的代码和 Agent 能力,在多领域取得了开源模型的 SOTA 效果。PAI 已支持最强版本 Qwen3-Coder-480B-A35B-Instruct 的云上一键部署。
图解机器学习 | XGBoost模型详解
XGBoost一个非常强大的Boosting算法工具包,本文讲解XGBoost的算法原理和工程实现,包括监督学习、回归树、集成、Gradient Boosting详细步骤,以及XGBoost的并行列块涉及、缓存访问等工程优化知识。
Big Data for AI实践:面向AI大模型开发和应用的大规模数据处理套件
文叙述的 Big Data for AI 最佳实践,基于阿里云人工智能平台PAI、MaxCompute自研分布式计算框架MaxFrame、Data-Juicer等产品和工具,实现了大模型数据采集、清洗、增强及合成大模型数据的全链路,解决企业级大模型开发应用场景的数据处理难题。
阿里云智能达摩院AI产品矩阵
“人工智能”已经成为了大家耳熟能详的词汇。如今,AI不再只是“能够在围棋比赛中战胜世界冠军”的技术了,人们对于它有了更多的期许。而在AI技术原子能力和产业落地产生的商业价值之间存在着必然的鸿沟,如何弥补这一鸿沟,为AI技术的终端用户产生真正的价值?本文中,达摩院机器智能实验室资深算法专家高杰将为大家分享他的观点。
免费试用