Hive实战 —— 电商数据分析(全流程详解 真实数据)
关于基于小型数据的Hive数仓构建实战,目的是通过分析某零售企业的门店数据来进行业务洞察。内容涵盖了数据清洗、数据分析和Hive表的创建。项目需求包括客户画像、消费统计、资源利用率、特征人群定位和数据可视化。数据源包括Customer、Transaction、Store和Review四张表,涉及多个维度的聚合和分析,如按性别、国家统计客户、按时间段计算总收入等。项目执行需先下载数据和配置Zeppelin环境,然后通过Hive进行数据清洗、建表和分析。在建表过程中,涉及ODS、DWD、DWT、DWS和DM五层,每层都有其特定的任务和粒度。最后,通过Hive SQL进行各种业务指标的计算和分析。
阿里云 EMR StarRocks VS 开源版本功能差异介绍
阿里云 E-MapReduce Serverless StarRocks 版是阿里云提供的 Serverless StarRocks 全托管服务,提供高性能、全场景、极速统一的数据分析体验,具备开箱即用、弹性扩展、监控管理、慢 SQL 诊断分析等全生命周期能力。内核 100% 兼容 StarRocks,性能比传统 OLAP 引擎提升 3-5 倍,助力企业高效构建大数据应用。本篇文章重点介绍阿里云 EMR StarRocks 与开源 StarRocks 的对比与客户案例。
Flink + Doris 实时湖仓解决方案
本文整理自SelectDB技术副总裁陈明雨在Flink Forward Asia 2024的分享,聚焦Apache Doris与湖仓一体解决方案。内容涵盖三部分:一是介绍Apache Doris,一款高性能实时分析数据库,支持多场景应用;二是基于Doris、Flink和Paimon的湖仓解决方案,解决批流融合与数据一致性挑战;三是Doris社区生态及云原生发展,包括存算分离架构与600多位贡献者的活跃社区。文章深入探讨了Doris在性能、易用性及场景支持上的优势,并展示了其在多维分析、日志分析和湖仓分析中的实际应用案例。
阿里云大数据ACA和ACP题库
来源周周的奇妙编程:https://developer.aliyun.com/profile/pmur6hy3nphhs
hive数仓 ods层增量数据导入
根据业务需求,当表数据量超过10万条时采用增量数据导入,否则全量导入。增量导入基于`create_date`和`modify_date`字段进行,并确保时间字段已建立索引以提升查询效率。避免在索引字段上执行函数操作。创建增量表和全量表,并按日期进行分区。首次导入全量数据,后续每日新增或变更数据保存在增量表中,通过全量表与增量表的合并保持数据一致性。
【赵渝强老师】基于Flink的流批一体架构
本文介绍了Flink如何实现流批一体的系统架构,包括数据集成、数仓架构和数据湖的流批一体方案。Flink通过统一的开发规范和SQL支持,解决了传统架构中的多套技术栈、数据链路冗余和数据口径不一致等问题,提高了开发效率和数据一致性。