MobileNetV3架构解析与代码复现
MobileNet模型基于深度可分离卷积,这是一种分解卷积的形式,将标准卷积分解为深度卷积和`1*1`的点卷积。对于MobileNet,深度卷积将单个滤波器应用于每个输入通道,然后,逐点卷积应用`1*1`卷积将输出与深度卷积相结合。
Batch Size对神经网络训练的影响
这篇文章非常全面细致地介绍了Batch Size的相关问题。结合一些理论知识,通过大量实验,文章探讨了Batch Size的大小对模型性能的影响、如何影响以及如何缩小影响等有关内容。
理解LSTM网络(整合)
LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。下面是自己学习过程中收集的LSTM资料
推荐场景GPU优化的探索与实践:CUDA Graph与多流并行的比较与分析
RTP 系统(即 Rank Service),是一个面向搜索和推荐的 ranking 需求,支持多种模型的在线 inference 服务,是阿里智能引擎团队沉淀多年的技术产品。今年,团队在推荐场景的GPU性能优化上又做了新尝试——在RTP上集成了Multi Stream,改变了TensorFlow的单流机制,让多流的执行并行,作为增加GPU并行度的另一种选择。本文详细介绍与比较了CUDA Graph与多流并行这两个方案,以及团队的实践成果与心得。