理解LSTM网络(整合)

简介: LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。下面是自己学习过程中收集的LSTM资料

Recurrent Neural Networks


RNN 是包含循环的网络,允许信息的持久化。

30.png


在上面的示例图中,神经网络的模块A,正在读取某个输入 Xt,并输出一个值 ht。循环可以使得信息可以从当前步传递到下一步。


RNN 可以被看做是同一神经网络的多次复制,每个神经网络模块会把消息传递给下一个。所以,如果我们将这个循环展开:

31.png

展开的RNN


链式的特征揭示了 RNN 本质上是与序列和列表相关的。他们是对于这类数据的最自然的神经网络架构。


LSTM 是一种特别的 RNN,比标准的 RNN 在很多的任务上都表现得更好。几乎所有的令人振奋的关于 RNN 的结果都是通过 LSTM 达到的。


长期依赖(Long-Term Dependencies)问题


RNN 的关键点之一就是他们可以用来连接先前的信息到当前的任务上,例如使用过去的视频段来推测对当前段的理解。如果 RNN 可以做到这个,他们就变得非常有用。但是真的可以么?答案是,还有很多依赖因素。


有时候,我们仅仅需要知道先前的信息来执行当前的任务。例如,我们有一个语言模型用来基于先前的词来预测下一个词。如果我们试着预测 “the clouds are in the sky” 最后的词,我们并不需要任何其他的上下文 —— 因此下一个词很显然就应该是 sky。在这样的场景中,相关的信息和预测的词位置之间的间隔是非常小的,RNN 可以学会使用先前的信息。


32.png

不太长的相关信息和位置间隔


但是同样会有一些更加复杂的场景。假设我们试着去预测“I grew up in France... I speak fluent French”最后的词。当前的信息建议下一个词可能是一种语言的名字,但是如果我们需要弄清楚是什么语言,我们是需要先前提到的离当前位置很远的 France 的上下文的。这说明相关信息和当前预测位置之间的间隔就肯定变得相当的大。


不幸的是,在这个间隔不断增大时,RNN 会丧失学习到连接如此远的信息的能力

33.png

相当长的相关信息和位置间隔


在理论上,RNN 绝对可以处理这样的 长期依赖 问题。人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN 肯定不能够成功学习到这些知识。Bengio, et al. (1994)等人对该问题进行了深入的研究,他们发现一些使训练 RNN 变得非常困难的相当根本的原因。


然而,幸运的是,LSTM 并没有这个问题!


LSTM 网络


  • LSTM结构

    34.png
  • 各种元素的图标

    35.png
  • 遗忘门:决定让那些信息继续通过这个 cell
    这是通过一个叫做“forget gate layer ”的sigmoid 神经层来实现的。它的输入是ht−1和xt,输出是一个数值都在 0,1 之间的向量(向量长度和 cell 的状态 Ct−1 一样),表示让 Ct−1 的各部分信息通过的比重。 0 表示“不让任何信息通过”, 1 表示“让所有信息通过”。
    36.png
    遗忘门 (forget gates)
  • 输入门:决定让多少新的信息加入到 cell 状态 中来
    步骤1:一个叫做“input gate layer ”的 sigmoid 层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容,Ct~
    37.png
    输入门 (input gates)

有了上述的结构,我们就能够更新 cell 状态了, 即把Ct−1更新为 Ct。 从结构图中应该能一目了然, 首先我们把旧的状态 Ct−1和ft相乘, 把一些不想保留的信息忘掉。然后加上it∗Ct~ 。这部分信息就是我们要添加的新内容。


38.png


更新 cell 状态

  • 输出门:决定输出什么值
    这个输出主要是依赖于 cell 的状态Ct,但是又不仅仅依赖于 Ct,而是需要经过一个过滤的处理。首先,我们还是使用一个 sigmoid 层来(计算出)决定Ct中的哪部分信息会被输出。接着,我们把Ct通过一个 tanh 层(把数值都归到 -1 和 1 之间),然后把 tanh 层的输出和 sigmoid 层计算出来的权重相乘,这样就得到了最后输出的结果。


39.png


输出门 (output gates)


综合感受下:


40.png


总览

内容来自:


GRU - Gated Recurrent Unit - 中文直译:门控循环单元


GRU作为LSTM的一种变体,将忘记门和输入门合成了一个单一的更新门。同样还混合了细胞状态和隐藏状态,加诸其他一些改动。最终的模型比标准的 LSTM 模型要简单,也是非常流行的变体。



41.png

GRU结构


内容来自:


BiLSTM(Bi-directional LSTM)- 双向LSTM


43.png



Bi-LSTM大致的思路是这样的,看图中最下方的输入层,假设一个样本(句子)有10个 timestep (字)的输入 x1,x2,...,x10。 现在有两个相互分离的 LSTMCell:

  1. 对于前向 fw_cell ,样本按照 x1,x2,...,x10 的顺序输入 cell 中,得到第一组状态输出 {h1,h2,...,h10} ;
  2. 对于反向 bw_cell ,样本按照 x10,x9,...,x1 的反序输入 cell 中,得到第二组状态输出 {h10,h9,...,[h1 };
  3. 得到的两组状态输出的每个元素是一个长度为 hidden_size 的向量(一般情况下,h1和h1长度相等)。现在按照下面的形式把两组状态变量拼起来{[h1,h1], [h2,h2], … , [h10,h10]}。
  4. 最后对于每个 timestep 的输入 xt, 都得到一个长度为 2*hidden_size 的状态输出 Ht= [ht,ht]。然后呢,后面处理方式和单向 LSTM 一样。
    内容来自:
相关文章
|
14天前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
175 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
3月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
|
6月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
7月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。

热门文章

最新文章