Caffe

首页 标签 Caffe
# Caffe #
关注
516内容
高性能深度学习支持引擎实战——TensorRT
随着传统的高性能计算和新兴的深度学习在百度、京东等大型的互联网企业的普及发展,作为训练和推理载体的GPU也被越来越多的使用。NVDIA本着让大家能更好地利用GPU,使其在做深度学习训练的时候达到更好的效果的目标,推出了支持高性能深度学习支持引擎——TensorRT。
通过阿里云容器服务深度学习解决方案上手Caffe+多GPU训练
阿里云容器服务提供的深度学习解决方案内置了对Tensorflow, Keras, MXnet框架的环境,并支持基于它们的深度学习模型开发、模型训练和模型预测。同时,对于模型训练和预测,用户还可以通过指定自定义容器镜像的方式,使用其他深度学习框架。
Windows 上 Caffe开发环境搭建
Caffe是目前非常流行的深度学习框架,使用C++/CUDA编写,使用方便,性能优异,适合线上环境部署。 原生Caffe是在Linux下编译部署的。对于初学者而言,大量依赖包需要花非常大代价才能编译成功,让人望而生畏。况且在Linux下阅读代码是一件非常头疼或蛋疼的事情。 为此,研究在W
编译caffe的Python借口,提示:ImportError: dynamic module does not define module export function (PyInit__caffe)
      >>> import caffeTraceback (most recent call last): File "", line 1, in File "/home/wangxiao/Downloads/project/caffe-master/python/caffe/__init__.
| |
来自: 云原生
AI开发者福音!阿里云推出国内首个基于英伟达NGC的GPU优化容器
3月28日,在2018云栖大会·深圳峰会上,阿里云宣布与英伟达GPU 云 合作 (NGC),开发者可以在云市场下载NVIDIA GPU 云镜像和运行NGC 容器,来使用阿里云上的NVIDIA GPU计算平台。
Caffe+CUDA8.0+CuDNNv5.1+OpenCV3.1+Ubuntu14.04 配置参考文献 以及 常见编译问题总结
Caffe + CUDA8.0 + CuDNNv5.1 + OpenCV3.1 + Ubuntu14.04  配置参考文献 ---- Wang Xiao  AnHui University  CVPR Group   2017-05-27    Warning: Please make ...
[雪峰磁针石博客]计算机视觉opcencv工具深度学习快速实战1人脸识别
使用OpenCV提供的预先训练的深度学习面部检测器模型,可快速,准确的进行人脸识别。 2017年8月OpenCV 3.3正式发布,带来了高改进的“深度神经网络”(dnn deep neural networks)模块。
免费试用