分布式计算

首页 标签 分布式计算
# 分布式计算 #
关注
37856内容
JindoFS: 云上大数据的高性能数据湖存储方案
JindoFS 是EMR打造的高性能大数据存储服务,可以为不同的计算引擎提供不同的存储服务,可以根据应用的场景来选择不同的存储模式。在2019杭州云栖大会大数据生态专场,阿里巴巴计算平台事业部EMR团队技术专家殳鑫鑫和Intel大数据团队软件开发经理徐铖共同向大家分享了云上大数据的高性能数据湖存储方案JindoFS的产生背景、架构以及与Intel DCPM的性能评测。
阿里云 MaxCompute 2020-12 月刊
2020年12月 MaxCompute 在查询加速、流式数据写入、消费限制、实时作业监控、元数据服务方面有最新发布,欢迎通过本月刊了解12月最新发布详情。
如何有效降低大数据平台安全风险
在2019杭州云栖大会大数据企业级服务专场,由阿里云智能计算平台事业部资深技术专家李雪峰带来以“如何有效降低大数据平台安全风险”为题的演讲。本文首先概括了企业在大数据上云过程中会产生的安全顾虑。接着,在大数据平台中要处理的安全风险中,对数据中心物理安全与网络安全、大数据平台系统安全以及数据应用安全三部分做了详细的介绍。最后,描述了阿里云飞天大数据平台的安全体系。
Spark in action on Kubernetes - Playground搭建与架构浅析
前言Spark是非常流行的大数据处理引擎,数据科学家们使用Spark以及相关生态的大数据套件完成了大量又丰富场景的数据分析与挖掘。Spark目前已经逐渐成为了业界在数据处理领域的行业标准。但是Spark本身的设计更偏向使用静态的资源管理,虽然Spark也支持了类似Yarn等动态的资源管理器,但是这些资源管理并不是面向动态的云基础设施而设计的,在速度、成本、效率等领域缺乏解决方案。
【逐云】阿里“水电煤”背后的人物故事
《逐云》第三期,我们拍了阿里巴巴通用计算平台负责人关涛,记录了他的学生时代,以及为什么从美回国来到阿里巴巴做通用计算平台,以及他对未来的展望。
凑单算法——基于Graph Embedding的bundle mining
本文描述如何在凑单场景突破找相似、发现惊喜的同时做到成交翻倍,实现体验和数据上的双赢。
| |
来自: 云原生
Spark in action on Kubernetes - Spark Operator的原理解析
在上篇文章中,向大家介绍了如何使用Spark Operator在kubernetes集群上面提交一个计算作业。今天我们会继续使用上篇文章中搭建的Playgroud进行调试与解析,帮助大家更深入的理解Spark Operator的工作原理。
企业大数据平台下数仓建设思路
介然(李金波),阿里云高级技术专家,现任阿里云大数据数仓解决方案总架构师。8年以上互联网数据仓库经历,对系统架构、数据架构拥有丰富的实战经验,曾经数据魔方、淘宝指数的数据架构设计专家。 与阿里云大数据数仓结缘 介然之前在一家软件公司给企业客户做软件开发和数仓开发实施,数仓开发和实施都是基于传统的
免费试用