Kubeflow-Katib-架构学习指南
本指南带你深入 Kubeflow 核心组件 Katib,一个 Kubernetes 原生的自动化机器学习系统。从架构解析、代码结构到技能清单与学习路径,助你由浅入深掌握超参数调优与神经架构搜索,实现从使用到贡献的进阶之旅。
Kubeflow-KServe-架构学习指南
KServe是基于Kubernetes的生产级AI推理平台,支持多框架模型部署与管理。本指南从架构解析、代码结构到实战部署,系统讲解其核心组件如InferenceService、控制器模式及与Knative、Istio集成原理,并提供学习路径与贡献指南,助你快速掌握云原生AI服务技术。
Kubeflow-Model-Registry-架构学习指南
Kubeflow Model Registry 是一个用于管理机器学习模型元数据的基础设施,采用 Go、Python、React 和 Kubernetes 技术栈,支持模型版本、注册与存储追踪。本指南系统解析其分层架构、核心流程与代码结构,提供从环境搭建到贡献代码的完整学习路径,助力开发者深入掌握模型管理实践。