流计算

首页 标签 流计算
# 流计算 #
关注
31261内容
流处理 or 批处理?大数据架构还需要流批一体吗?
简介:流处理与批处理曾是实时监控与深度分析的两大支柱,但二者在数据、代码与资源上的割裂,导致维护成本高、效率低。随着业务对数据实时性与深度分析的双重需求提升,传统架构难以为继,流批一体应运而生。它旨在通过逻辑、存储与资源的统一,实现一套系统、一套代码同时支持实时与离线处理,提升效率与一致性,成为未来大数据架构的发展方向。
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
RTP协议分析和详解
一、RTP协议分析 第1章.     RTP概述 1.1.  RTP是什么 RTP全名是Real-time Transport Protocol(实时传输协议)。它是IETF提出的一个标准,对应的RFC文档为RFC3550(RFC1889为其过期版本)。
FeatHub:流批一体的实时特征工程平台
本次分享中,将介绍 FeatHub,一个由阿里云自研并开源的实时特征平台。我们将介绍 FeatHub 的架构设计,已经完成的工作,以及近期的发展计划。
如何为Kafka加上账号密码(二)
本小节我们就为Kafka添加最简单的认证方式,也就是SASL_PLAINTEXT(即SASL/PLAIN+ 非加密通道)。
VR技术的基本原理与发展历程:探索虚拟现实的无限可能
【8月更文挑战第24天】VR技术作为一项具有广阔前景和巨大潜力的技术,正在不断改变着我们的世界。让我们共同期待VR技术在未来的更多精彩表现吧!
Flink 2.0 存算分离状态存储 — ForSt DB 
本文整理自阿里云技术专家兰兆千在Flink Forward Asia 2024上的分享,主要介绍Flink 2.0的存算分离架构、全新状态存储内核ForSt DB及工作进展与未来展望。Flink 2.0通过存算分离解决了本地磁盘瓶颈、检查点资源尖峰和作业恢复速度慢等问题,提升了云原生部署能力。ForSt DB作为嵌入式Key-value存储内核,支持远端读写、批量并发优化和快速检查点等功能。性能测试表明,ForSt在异步访问和本地缓存支持下表现卓越。未来,Flink将继续完善SQL Operator的异步优化,并引入更多流特性支持。
免费试用