OCR文字识别方法综述
摘 要:文字识别可以把海量非结构化数据转换为结构化数据,从而支撑各种创新的人工智能应用,是计算机视觉研究领域的分支之一,其任务是识别出图像中的文字内容,一般输入来自于文本检测得到的文本框截取出的图像文字区域。近几年来,基于深度学习的文字识别算法模型已取得不错成果,其过程无需进行特征处理且可以实现复杂场景文字识别,效果要优于传统文字识别方法,逐渐成为文字识别研究应用的主流方式。本文将主要介绍基于深度学习的文字识别技术综述,分类总结主流文字识别经典算法,讨论未来文字识别领域发展与研究趋势。
一文搞懂SDIO
SDIO(Secure Digital Input and Output),即安全数字输入输出接口。它是在SD卡接口的基础上发展而来,它可以兼容之前的SD卡,并可以连接SDIO接口设备,比如:蓝牙、WIFI、GPS等。
【实操】Java+百度ocr,实现图片识别文字小工具
本文介绍了一个基于Java和百度OCR的文字识别工具,能够通过截图或上传图片实现文字识别,并使用exe4j将工具封装为exe文件以便于使用。文章详细介绍了实现过程,包括Java Swing页面布局、百度OCR配置及使用方法,以及如何将Java项目打包成jar和exe文件。此外,还提供了一些相关资源供读者参考。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
基于模型蒸馏的大模型文案生成最佳实践
本文介绍了基于模型蒸馏技术优化大语言模型在文案生成中的应用。针对大模型资源消耗高、部署困难的问题,采用EasyDistill算法框架与PAI产品,通过SFT和DPO算法将知识从大型教师模型迁移至轻量级学生模型,在保证生成质量的同时显著降低计算成本。内容涵盖教师模型部署、训练数据构建及学生模型蒸馏优化全过程,助力企业在资源受限场景下实现高效文案生成,提升用户体验与业务增长。
Qwen‑Image 如何实现 95 %+ 多语种文本渲染准确率
摘要:依托跨语种海量高质量数据、20 B 参数的双通道 MMDiT 架构,以及由浅入深的课程式多任务训练策略,Qwen‑Image 将开源扩散模型在文字渲染上的字符准确率提升到 95 %以上,并保持段落级排版一致性。下文将从数据、模型、训练、评测四个维度拆解这一结果的技术原理,并给出快速复现与未来展望。