机器学习-异常检测算法(二):Local Outlier Factor
Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et.al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3000+ 的引用。在 LOF 之前的异常检测算法大多是基于统计方法的,或者是借用了一些聚类算法用于异常点的识别(比如 ,DBSCAN,OPTICS)。
邓侃解读:深度学习病历分析前沿进展
邓侃博士又一力作,看深度学习如何让电子病历分析取得突破:Word2Vec、AutoEncoder让文字转换为张量,有助于更精准的预测;医学知识图谱,让我们能够清晰、量化地定义疾病表型;将图像也编码成张量,构建统一的患者画像,完整表达病情描述,实现临床导航和发病预测……曾经是冷门中的冷门,正在迎来一个又一个的进展。
SLS机器学习介绍(02):时序聚类建模
在大型互联网企业中,对海量KPI(关键性能指标)进行监控和异常检测是确保服务质量和可靠性的重要手段。基于互联网的服务型企业(如线上购物、社交网络、搜索引擎等)通过监控各种系统及应用的数以万计的KPI(如CPU利用率、每秒请求量等)来确保服务可靠性。