数据挖掘

首页 标签 数据挖掘
# 数据挖掘 #
关注
26947内容
【玩转数据系列四】听说啤酒和尿布很配?本期教你用协同过滤做推荐
数据挖掘的一个经典案例就是尿布与啤酒的例子。尿布与啤酒看似毫不相关的两种产品,但是当超市将两种产品放到相邻货架销售的时候,会大大提高两者销量。很多时候看似不相关的两种产品,却会存在这某种神秘的隐含关系,获取这种关系将会对提高销售额起到推动作用,然而有时这种关联是很难通过理性的分析得到的。这时候我们需
MaxCompute上你从未体验过的数据分析和机器学习过程
PyODPS,拥有对于Python用户传统的数据分析和机器学习愉快的体验,包括了DataFrame框架和机器学习模块,它们类似于pandas+scikit-learn,能用它们进行数据分析、绘图、机器学习等等。
阿里云服务器配置选择方法和经验(CPU+内存+宽带)
阿里云ECS云服务器配置的选择不仅仅包括CPU核数、内存及宽带多少,还需要根据实际业务场景选择对应的规格族,云吞铺子分享阿里云服务器的选配方法和经验: 云服务器的CPU+内存选配 普通的个人小型网站,如:个人博客等小流量网站,可选择入门级配置的云服务器推荐配置:1核CPU、1G或2G内存、硬盘40G、1M或2M带宽 论坛、门户类网站:论坛、门户类网站,用户活跃性与访问量较高,为了保证足够的服务器资源空间,提升访问速度。
| |
来自: 云存储
AI赋能DevOps:数据驱动的全栈工程师实践
DevOps是什么? 对于传统的软件研发而言,开发,测试,运维,运营,有不同的岗位进行分工协作,以保证质量和专业度,同一件事情,依赖不同岗位的排期、沟通、协调,效率难免会有打折。而对于互联网业务来说,快速的迭代,对人力的需求非常强烈,不大可能有足够的人力支撑这么多岗位。
强化学习在电商环境下的若干应用与研究
本文描述了淘宝搜索算法AI技术团使用强化学习算法在淘宝的环境中怎么解决实际的业务问题的以及一些研究探索。
机器学习-异常检测算法(二):Local Outlier Factor
Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et.al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3000+ 的引用。在 LOF 之前的异常检测算法大多是基于统计方法的,或者是借用了一些聚类算法用于异常点的识别(比如 ,DBSCAN,OPTICS)。
阿里云 MaxCompute 2020-4 月刊
4月MaxCompute审计日志发布,可通过历史事件及明细查询、实时行为事件分析,满足您实时审计、问题回溯分析等需求。同时,MaxCompute在支持实时消费监控告警的基础上新发布支持对按量付费单个SQL作业的消费进行控制,帮您更好的监控消费。更多4月的新功能与新解决方案,欢迎阅读4月刊。
| |
来自: 云存储
Logtail技术分享(一) : Polling + Inotify 组合下的日志保序采集方案
logtail是阿里云一款进行日志实时采集的Agent,当前几十万台部署logtail的设备运行在各种不同环境上(集团、蚂蚁、阿里云,还有用户部署在公网、IOT设备),每天采集数PB的数据,支撑上千种应用的日志采集。
一文带你入门图论和网络分析
本文从图的概念以及历史讲起,并介绍了一些必备的术语,随后引入了networkx库,并以一个航班信息数据集为例,带领读者完成了一些基本分析。
免费试用