软考通关密钥:计算机系统核心原理全解剖——软件设计师必懂的底层逻辑
专为软考中级软件设计师打造,深入解析CPU架构、存储体系、进制转换、原码补码、浮点数、寻址方式、校验码、RISC/CISC、流水线、Cache、中断、I/O控制、总线及加密技术等核心知识点,结合真题剖析高频考点,构建计算机系统底层知识体系,提升应试与实践能力。
鸿蒙 HarmonyOS NEXT端云一体化开发-云函数篇
本文介绍基于华为AGC的端云一体化开发流程,涵盖项目创建、云函数开通、应用配置及DevEco集成。重点讲解云函数的编写、部署、调用与传参,并涉及环境变量设置、负载均衡、重试机制与熔断策略等高阶特性,助力开发者高效构建稳定云端服务。
MicroPython+ESP32 C3开发上云
本文介绍了基于MicroPython的ESP32 C3开发,涵盖GPIO控制、PWM调光、定时器、DS18B20温度采集、WiFi连接及Socket通信等内容,并详细演示了如何通过WIFI模块连接新大陆云平台,实现设备登录与心跳包维持连接。
告别OOM!这款开源神器,如何为你精准预测AI模型显存?
在 AI 开发中,CUDA 显存不足常导致训练失败与资源浪费。Cloud Studio 推荐一款开源工具——AI 显存计算器,可精准预估模型训练与推理所需的显存,支持主流模型结构与优化器,助力开发者高效利用 GPU 资源。项目地址:github.com/st-lzh/vram-wuhrai
通义大模型千问3助力B站,在618期间,商单成交效率提升5倍+
B站接入通义千问Qwen3等模型打造智能体InsightAgent,提升商业平台“花火”和“必达”的效率。花火实现商单成交效率提升5倍以上,必达数据洞察效率提升3倍以上,推动分钟级投放决策。
释放数据潜力:利用 MCP 资源让大模型读懂你的服务器
MCP(Model Control Protocol)资源系统是将服务器数据暴露给客户端的核心机制,支持文本和二进制两种类型资源。资源通过唯一URI标识,客户端可通过资源列表或模板发现资源,并使用`resources/read`接口读取内容。MCP还支持资源实时更新通知及订阅机制,确保动态数据的及时性。实现时需遵循最佳实践,如清晰命名、设置MIME类型和缓存策略,同时注重安全性,包括访问控制、路径清理和速率限制等。提供的示例代码展示了如何用JavaScript和Python实现资源支持。
鸿蒙 Next 对接 AI API 实现文字对话功能指南
本指南介绍如何在鸿蒙 Next 系统中对接 AI API,实现文字对话功能。首先通过 DevEco Studio 创建项目并配置网络权限,选择合适的 AI 服务(如华为云或百度文心一言)。接着,使用 Node.js 转发请求,完成客户端与服务器端代码编写。最后进行功能测试与优化,确保多轮对话顺畅、性能稳定。此过程需严格遵循开发规范,充分利用系统资源,为用户提供智能化交互体验。
AI 解决方案的安全控制设计与实施
AI 解决方案的安全控制设计与实施涵盖数据安全、模型安全、系统安全及合规治理四大领域。通过数据加密、访问控制、差分隐私等手段保障数据安全;采用对抗训练、联邦学习确保模型安全;利用容器化部署、可信执行环境维护系统安全;并遵循 GDPR 等法规,进行红队测试和应急响应,确保 AI 全生命周期的安全性与合规性。
DeepSeek-R1论文细节时间线梳理
中国AI初创公司DeepSeek发布了大语言模型R1,该模型在推理任务上媲美OpenAI的ChatGPT,且训练成本仅600万美元。DeepSeek由杭州对冲基金High-Flyer支持,总部位于杭州和北京。R1基于V3-Base,使用监督微调和强化学习训练,针对硬件限制进行了优化。模型在多语言处理、推理风格等方面表现出色,但存在一些局限性,如法语表现欠佳、偶尔切换语言等。DeepSeek的创新技术包括FP8量化、多头潜在注意力和蒸馏方法,引发了广泛关注和讨论。开源社区正积极尝试复现其结果,但面临训练数据和代码未公开的挑战。DeepSeek的低成本高效训练策略为AI领域带来了新的思考方向。
百度 SEO:不是玄学,是科学与艺术的 “恋爱”
本文介绍了百度SEO的基本原则和方法,涵盖关键词优化、内容优化、网站结构优化、链接建设和用户体验优化五个方面。通过科学的方法和艺术的技巧,帮助网站提升在百度搜索引擎中的排名,吸引更多流量。
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
大模型时代的思考:小心陷入ChatLLMs构建的蜜糖陷阱-基于人类反馈的间接(反向)驯化-你是否有注意到?
本文探讨了大模型基于人类反馈训练的原理及其潜在风险,特别是大模型在迎合用户需求时可能带来的“蜜糖陷阱”。通过实际案例分析,强调了理性使用大模型的重要性,提出了保持批判性思维、明确人机协作边界、提升人类判断力和创新能力等建议,旨在让大模型真正为人类服务,而不是限制人类思维。
前端架构思考 :专注于多框架的并存可能并不是唯一的方向 — 探讨大模型时代前端的分层式微前端架构
随着前端技术的发展,微前端架构成为应对复杂大型应用的流行方案,允许多个团队使用不同技术栈并将其模块化集成。然而,这种设计在高交互性需求的应用中存在局限,如音视频处理、AI集成等。本文探讨了传统微前端架构的不足,并提出了一种新的分层式微前端架构,通过展示层与业务层的分离及基于功能的横向拆分,以更好地适应现代前端需求。
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。
AI+脚本让我的效率翻倍,你也可以试试
本文分享了一名高级软件工程师如何利用 AI 工具(如 VSCode 插件 Codeium、通义灵码,及网页端的通义千问和 GPT-4)提升工作效率的经验。从代码生成、单元测试、脚本生成到文本润色,再到新框架学习,AI 工具在多个方面显著提高了开发效率和代码质量。文章还提供了具体示例和注意事项,帮助读者更好地应用这些工具。
Java“未封闭的 String 表达式”怎么解决
要解决Java中的“未封闭的 String 表示”问题,需检查并修正字符串字面量,确保每个字符串被正确地用双引号括起来。若字符串跨越多行,可使用字符串连接操作符(+)或引入文本块(JDK 13 及以上版本)。这能帮助避免语法错误,并使代码更整洁易读。
谈谈Function Calling
Function Calling赋予大语言模型调用外部工具的能力,弥补其缺乏行动力、信息滞后等缺陷。它像“指挥家”般,理解用户意图,选择合适的工具执行操作,并将结果反馈给用户,从而连接虚拟与现实。这一机制让大语言模型如虎添翼,更好地服务于人类。
通义语音大模型评测:迈向更自然、更智能的语音交互
随着人工智能技术的迅猛发展,语音识别和自然语言处理领域不断涌现出新的模型和应用。阿里云推出的通义语音大模型,正是在这一背景下应运而生。本文将对通义语音大模型进行详细评测,探讨其技术架构、应用场景、性能表现以及未来发展前景。
使用Python获取1688商品详情的教程
使用Python爬取1688商品详情,涉及requests库抓取页面、BeautifulSoup解析HTML,安装必要库如requests、beautifulsoup4、pandas和lxml。通过get_page发送请求,BeautifulSoup解析提取如标题、价格等信息。数据处理后可使用pandas保存至CSV。注意遵守法律法规和网站政策,避免频繁请求。[代码片段及更多详情见链接
大模型自动生成并运行代码的体验与优化
随着近两年大模型的不断发展,它们在各个领域展示出了惊人的能力,可以说是在各个领域到了“开花结果”的阶段。比如最近技术圈比较火的阿里云的通义千问已经可以自己写代码、跑代码了,作为开发者,我觉得这种能力不仅提高了开发效率,还推动了编程实践向更高层次的转变和发展。但是,在使用大模型自动生成代码时,我们也会面临一些挑战,其中之一是代码可能会曲解开发者的需求。那么本文就来分享一下个个人的体验以及如何优化这种情况。
【SCI论文】“学术丑闻揭露:当AI写作遭遇学术审稿,ChatGPT意外成为论文共作者!“
最近,一篇发表在《Surfaces and Interfaces》的论文引起了广泛关注,因为其中意外包含了ChatGPT的提示语,暴露出学术审稿过程中的疏忽。这篇论文讨论了铜基金属-有机框架-芳香族纤维素分隔器对锂金属阳极电池的影响,但却出现了不该出现的ChatGPT对话内容。这一事件不仅令人哭笑不得,还引发了对学术审核严谨性的质疑。它反映了当前学术界可能过度依赖AI写作工具,忽略了基本的检查和编辑步骤。这一事件提醒学术界必须加强审查机制和自律,确保论文质量,防止类似尴尬情况的再次发生。
使用Git LFS从Hugging Face下载大型语言模型
Hugging Face作为主流的模型库,提供了大量预训练模型,但这些模型的大尺寸使得直接下载可能会遇到困难。Git LFS(Large File Storage)作为Git的一个扩展,为我们提供了一个解决方案
函数计算X 通义千问快速部署 AI 个人助手应用
基于函数计算X 通义千问快速部署 AI 个人助手应用,用户可以根据需要选择不同角色的AI助手开启写作,角色包括职业顾问、小红书写手、心灵导师等,你可以尽情发挥创造力,通过限制提示词、字数、情节等各种条件生成短篇小说。
AIGC-知识库-LLM:在云上从0开始搭建智能问答机器人Streamlit网页版
本文描述在阿里云上从0开始构建个人/企业专属,具备私域知识库+LLM智能问答能力的网页版聊天机器人。网页采用streamlit实现,知识库技术方案使用了Lindorm AI数据服务平台知识库能力,LLM使用了开源ChatGLM2-6B。 Streamlit使用起来非常简便,可以让开发者快速(短则几十分钟即可)搭建一个具备公网访问能力的网页。尤其在人工智能开发上,可使用Streamlit快速搭建应用环境,让开发人员将更多精力集中在人工智能本身,本文从0开始详细讲解整个应用的构建过程,代码实现了一个简洁的具备公网访问能力的网页版聊天机器人。
数据缓存系列分享(六):通义千问Qwen-14B大模型快速体验
阿里达摩院近期对通义千问大模型 Qwen-14B 进行了开源(之前开源的是Qwen-7B模型),目前在ModelScope和HuggingFace上均可直接下载。关于Qwen-7B的搭建可以参考我们之前的文章:数据缓存系列分享(五):开源大语言模型通义千问快速体验版,本文将使用一样的方式打开Qwen-14B,快速体验一下。
当我不再把 AI 当工具,而是当“第二大脑”
将AI视为“第二大脑”,而非工具,让我从追求实现转向思考价值。它不加速代码,却减少弯路;不替代决策,却激发反思。真正改变的,是我先想什么,而非怎么做。
别让"我觉得"毁了架构:用这条指令让AI做你的技术选型审计员
技术选型往往受限于主观偏见和认知盲区。本文提供了一套“技术选型分析”AI指令,将大模型化身为客观的架构审计员,通过多维度评分和风险评估,帮助开发者从“经验驱动”转向“证据驱动”,做出经得起时间考验的技术决策。
希望国内AI不要作恶,不要变成百度
国内AI常引用营销号,而GPT多引官网与权威报告,根源在于信源标准的代差。本文揭示中文互联网“脏数据”环境如何导致AI沦为信息扩音器,并提出建立“AI-Rank”价值体系,以信源加权、逻辑检测与交叉验证重构答案可信度,呼吁AI厂商肩负文明责任,打造真理裁判长。
筑牢办公安全最后一环:打印溯源水印技术为纸质文档构建坚固防线
在信息化时代,纸质文档泄密风险突出。本文分析现有防护短板,介绍打印溯源水印技术如何通过隐形标识实现精准追踪,有效应对复印、拍照等场景下的信息泄露,为政企纸质文件安全提供创新解决方案。
告别旅行规划的"需求文档地狱"!这个AI提示词库,让你像调API一样定制完美旅程
作为开发者,旅行规划如同“需求地狱”:信息碎片、需求多变、缺乏测试。本文提出一套“企业级”AI提示词库,将模糊需求转化为结构化“API请求”,实现标准化输入输出,让AI成为你的专属旅行架构师,30分钟生成专业定制方案,提升决策质量,降低90%时间成本。
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
软考中级软件设计师专项-数据库篇
本资料涵盖数据库核心概念,包括结构数据模型(层次、网状、关系模型)、三级模式结构(概念模式、外模式、内模式)、关系模型术语与完整性约束(实体、参照完整性)、笛卡尔积及关系代数操作(投影、选择、连接)、SQL语言基础与查询优化、关系模式规范化(范式1NF、2NF、3NF、BCNF)、E-R图设计与数据库设计流程、事务管理(ACID特性)、并发控制与分布式数据库等内容,适合数据库学习与考试复习。
鸿蒙 HarmonyOS NEXT星河版APP应用开发-ArkTS面向对象及组件化UI开发使用实例
本文介绍了ArkTS语言中的Class类、泛型、接口、模块化、自定义组件及状态管理等核心概念,并结合代码示例讲解了对象属性、构造方法、继承、静态成员、访问修饰符等内容,同时涵盖了路由管理、生命周期和Stage模型等应用开发关键知识点。
推理速度提升300%:LLaMA4-MoE的FlashAttention-2集成与量化部署方案
本文详解LLaMA4-MoE模型架构与实现全流程,涵盖语料预处理、MoE核心技术、模型搭建、训练优化及推理策略,并提供完整代码与技术文档,助你掌握大模型MoE技术原理与落地实践。
零成本打造智能服务端:MCP采样的降本增效实践
本文介绍MCP采样机制,突破传统单向调用模式,实现服务器与客户端LLM的双向协作,提升扩展性、降低成本,支持灵活模型选择。通过FastMCP框架,打造高效分布式AI计算架构。
释放Qwen3-Coder潜力:Bolt+AnalyticDB Supabase,打造真正的生产力工具
阿里云发布Qwen3-Coder,具备卓越自主编码能力,支持超长上下文窗口与工具调用,结合Bolt与AnalyticDB Supabase,实现高效开发。