前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
NLP 自学习平台,3个模型定制额度 1个月
简介: 本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。

今天就遇到有点儿dt的问题,利用大模型顺利通了自定义的工具调用(并没有用到tools功能,而是通过prompt强制输出),单个单个的没问题哈,但是多个一起就出现问题了

我说“关闭电脑PC1, 打开第2台电脑” 它看不懂了,但我反过来说“打开第2台电脑,关闭电脑PC1”,它倒是很机智,顺利找到了对应的主机id并调用了正确的工具,反正我是一脸懵逼,这到底是个什么鬼?毕竟是个黑盒,找到原因可能难但问题必须解决撒,只能另辟蹊径(PS这个不是恶作剧,而是一个云桌面的运维后台,我正研究如何利用AI提升效率)

1 问题背景:自然语言指令处理中的困境

在多任务处理的场景下,用户可能会提出一些包含多个动作的指令,比如:

  • “关闭电脑PC1,打开第2台电脑。”
  • “打开第四台电脑,关闭电脑PC1。”

通过实际测试,发现模型在面对这些复杂指令时,有时无法正确理解和执行所有任务。例如:

  • 当用户要求“关闭电脑PC1,打开第2台电脑”时,模型可能无法正确调用两个工具来分别执行这两个操作。
  • 但当指令顺序被调整为“打开第四台电脑,关闭电脑PC1”时,模型能够正确地按顺序调用工具,并且完成了用户的需求。

17368ae4857b4cb78c3cb91c02bd853c.png

image.gif 编辑

这种现象提示我们,模型在解析和执行指令时受到指令语序和结构的影响。因此,我们需要一种方法来更好地解析用户的复杂指令,并将其转换为具体的可执行操作。

2 解决方案:通过 LLM 解析层进行指令分解

为了让 LLM 更好地处理这些复杂的自然语言指令,建议增加一个专门的解析层,用于将原始的自然语言需求转换为多个明确的、可执行的步骤。该解析层可以通过 LLM 来实现,具体功能如下:

1. 分解复杂指令为多个步骤

用户的自然语言指令往往包含多个动作,这些动作有时是并行的,有时是按顺序执行的。通过 LLM 解析层,我们可以将复杂的指令进行拆解。例如:

  • 用户输入:“关闭电脑PC1,打开第2台电脑。”
  • 解析层输出:
  • Step 1: 关闭电脑PC1
  • Step 2: 打开第2台电脑

通过这种方式,每一个步骤都变得更加明确,可以独立执行,并且避免了模型对多个并列任务的混淆。

2. 明确操作类型与对象识别

解析层可以帮助模型更好地理解每个指令中的动词(如“关闭”或“打开”)及其作用对象(如“电脑PC1”或“第2台电脑”)。例如:

  • 用户输入:“打开第四台电脑,关闭电脑PC1。”
  • 解析层输出:
  • Action 1: 打开 -> 电脑PC4
  • Action 2: 关闭 -> 电脑PC1

通过这种明确的操作类型和对象识别,模型可以清晰地理解每个操作需要作用的目标,并根据目标生成正确的操作命令。

3. 处理任务的依赖关系

在复杂的任务环境中,某些操作之间存在依赖关系。例如,可能需要先关闭一台电脑再打开另一台。这时,解析层可以识别这些依赖关系,并为模型生成有序的执行步骤。对于顺序不明的任务,解析层可以判断是否需要并行执行任务,或者是否需要调整任务的顺序。

4. 自然语言转为工具命令

通过解析层,模型可以将复杂的自然语言指令转化为系统所需的结构化工具命令。以关闭和打开电脑为例,经过解析的步骤最终可以生成具体的 API 调用或命令行操作,如:

  • Command 1: 关闭(PC1)
  • Command 2: 打开(PC2)

这种方法将自然语言需求转化为明确的系统命令,使得多任务处理更加高效且可控。

3 实践示例

假设用户发出了如下复杂指令:

  • 用户输入:“请先关闭PC3,然后开启PC1和PC4,最后关掉PC2。”

通过 LLM 解析层,这个复杂的需求可以被拆解为多个明确的任务步骤:

  1. Step 1: 关闭 PC3
  2. Step 2: 开启 PC1
  3. Step 3: 开启 PC4
  4. Step 4: 关闭 PC2

模型再根据这些步骤依次执行任务,或者将并行任务(如开启PC1和PC4)同时处理,最终确保任务按预期完成。

4 如何设计解析层

要设计一个高效的 LLM 解析层,需要注意以下几个关键点:

  1. 鲁棒的指令拆解能力:解析层需要能够理解复杂的自然语言指令,并准确提取出任务的关键动词和作用对象。比如,“关闭”“打开”等动词以及“PC1”“PC4”等对象的识别必须准确无误。
  2. 任务依赖关系的识别:解析层必须能够处理任务之间的依赖关系,确保前后顺序的合理性。在需要时,能够区分并行任务与串行任务。
  3. 应对模糊指令的能力:用户的自然语言可能包含模糊表达,如“打开所有电脑”,解析层需要能够处理这种模糊需求,推理出上下文中的具体执行对象。
  4. 灵活性与适应性:解析层还需要能够应对不同领域的任务需求,具有足够的灵活性来解析不同语境下的指令。

5 总结

通过增加一个 LLM 解析层,可以极大提高多任务处理场景中指令解析的准确性和执行效率。它不仅可以将复杂的自然语言指令拆解为多个明确的操作步骤,还能够根据任务间的依赖关系调整顺序,生成具体的工具命令,确保任务的正确执行。


相关文章
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
深挖大模型幻觉!哈佛大学最新报告:LLM等价于众包,只是在输出网络共识
大型语言模型(LLM)如ChatGPT正改变人机交互,但在生成看似真实的错误信息方面存在“幻觉”问题。这种现象源于LLM依赖统计概率而非语义理解,导致在处理争议或冷门话题时易出错。研究显示,LLM的准确性高度依赖于训练数据的质量和数量。尽管如此,LLM仍具巨大潜力,需持续优化并保持批判性使用。
42 12
|
21天前
|
人工智能 自然语言处理
大模型在装傻!谷歌苹果最新发现:LLM知道但不告诉你,掌握知识比表现出来的多
在AI领域,大模型(LLM)展现出了惊人的进步,但在谷歌和苹果的最新研究中,发现这些模型有时会故意“装傻”,即使已知正确答案也不告知用户。这种“隐藏智慧”现象揭示了大模型可能具备超出表面表现的深层能力,对AI评估与应用提出了新挑战,同时也带来了设计更高效模型的新机遇。论文链接:https://arxiv.org/pdf/2410.02707
37 11
|
19天前
|
移动开发 缓存 前端开发
深入理解前端路由:原理、实现与应用
本书《深入理解前端路由:原理、实现与应用》全面解析了前端路由的核心概念、工作原理及其实现方法,结合实际案例探讨了其在现代Web应用中的广泛应用,适合前端开发者和相关技术人员阅读。
|
29天前
|
前端开发 项目管理
Gitflow分支策略及其在前端工程化中的应用
Gitflow 分支策略也并非适用于所有项目。对于一些小型或简单的前端项目,可能会显得过于复杂。在实际应用中,需要根据项目的具体情况和团队的需求进行适当调整和优化。
|
25天前
|
自然语言处理 前端开发 JavaScript
深入理解前端中的 “this” 指针:从基础概念到复杂应用
本文全面解析前端开发中“this”指针的运用,从基本概念入手,逐步探讨其在不同场景下的表现与应用技巧,帮助开发者深入理解并灵活掌握“this”的使用。
|
25天前
|
存储 前端开发 JavaScript
前端中对象的深度应用与最佳实践
前端对象应用涉及在网页开发中使用JavaScript等技术创建和操作对象,以实现动态交互效果。通过定义属性和方法,对象可以封装数据和功能,提升代码的组织性和复用性,是现代Web开发的核心技术之一。
|
29天前
|
前端开发
结合具体案例分析Gitflow分支策略在大型前端项目中的应用优势
通过这个具体案例可以看出,Gitflow 分支策略在大型前端项目中能够提供有条不紊的开发环境,保障项目的稳定性和持续发展。
|
28天前
|
缓存 JavaScript 前端开发
JavaScript 与 DOM 交互的基础及进阶技巧,涵盖 DOM 获取、修改、创建、删除元素的方法,事件处理,性能优化及与其他前端技术的结合,助你构建动态交互的网页应用
本文深入讲解了 JavaScript 与 DOM 交互的基础及进阶技巧,涵盖 DOM 获取、修改、创建、删除元素的方法,事件处理,性能优化及与其他前端技术的结合,助你构建动态交互的网页应用。
41 5
|
26天前
|
JavaScript 前端开发 测试技术
构建高效可维护的前端应用
构建高效可维护的前端应用
|
26天前
|
编解码 监控 JavaScript
打造高效前端应用
打造高效前端应用
35 1
下一篇
DataWorks