前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
视觉智能开放平台,视频资源包5000点
简介: 本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。

今天就遇到有点儿dt的问题,利用大模型顺利通了自定义的工具调用(并没有用到tools功能,而是通过prompt强制输出),单个单个的没问题哈,但是多个一起就出现问题了

我说“关闭电脑PC1, 打开第2台电脑” 它看不懂了,但我反过来说“打开第2台电脑,关闭电脑PC1”,它倒是很机智,顺利找到了对应的主机id并调用了正确的工具,反正我是一脸懵逼,这到底是个什么鬼?毕竟是个黑盒,找到原因可能难但问题必须解决撒,只能另辟蹊径(PS这个不是恶作剧,而是一个云桌面的运维后台,我正研究如何利用AI提升效率)

1 问题背景:自然语言指令处理中的困境

在多任务处理的场景下,用户可能会提出一些包含多个动作的指令,比如:

  • “关闭电脑PC1,打开第2台电脑。”
  • “打开第四台电脑,关闭电脑PC1。”

通过实际测试,发现模型在面对这些复杂指令时,有时无法正确理解和执行所有任务。例如:

  • 当用户要求“关闭电脑PC1,打开第2台电脑”时,模型可能无法正确调用两个工具来分别执行这两个操作。
  • 但当指令顺序被调整为“打开第四台电脑,关闭电脑PC1”时,模型能够正确地按顺序调用工具,并且完成了用户的需求。

17368ae4857b4cb78c3cb91c02bd853c.png

image.gif 编辑

这种现象提示我们,模型在解析和执行指令时受到指令语序和结构的影响。因此,我们需要一种方法来更好地解析用户的复杂指令,并将其转换为具体的可执行操作。

2 解决方案:通过 LLM 解析层进行指令分解

为了让 LLM 更好地处理这些复杂的自然语言指令,建议增加一个专门的解析层,用于将原始的自然语言需求转换为多个明确的、可执行的步骤。该解析层可以通过 LLM 来实现,具体功能如下:

1. 分解复杂指令为多个步骤

用户的自然语言指令往往包含多个动作,这些动作有时是并行的,有时是按顺序执行的。通过 LLM 解析层,我们可以将复杂的指令进行拆解。例如:

  • 用户输入:“关闭电脑PC1,打开第2台电脑。”
  • 解析层输出:
  • Step 1: 关闭电脑PC1
  • Step 2: 打开第2台电脑

通过这种方式,每一个步骤都变得更加明确,可以独立执行,并且避免了模型对多个并列任务的混淆。

2. 明确操作类型与对象识别

解析层可以帮助模型更好地理解每个指令中的动词(如“关闭”或“打开”)及其作用对象(如“电脑PC1”或“第2台电脑”)。例如:

  • 用户输入:“打开第四台电脑,关闭电脑PC1。”
  • 解析层输出:
  • Action 1: 打开 -> 电脑PC4
  • Action 2: 关闭 -> 电脑PC1

通过这种明确的操作类型和对象识别,模型可以清晰地理解每个操作需要作用的目标,并根据目标生成正确的操作命令。

3. 处理任务的依赖关系

在复杂的任务环境中,某些操作之间存在依赖关系。例如,可能需要先关闭一台电脑再打开另一台。这时,解析层可以识别这些依赖关系,并为模型生成有序的执行步骤。对于顺序不明的任务,解析层可以判断是否需要并行执行任务,或者是否需要调整任务的顺序。

4. 自然语言转为工具命令

通过解析层,模型可以将复杂的自然语言指令转化为系统所需的结构化工具命令。以关闭和打开电脑为例,经过解析的步骤最终可以生成具体的 API 调用或命令行操作,如:

  • Command 1: 关闭(PC1)
  • Command 2: 打开(PC2)

这种方法将自然语言需求转化为明确的系统命令,使得多任务处理更加高效且可控。

3 实践示例

假设用户发出了如下复杂指令:

  • 用户输入:“请先关闭PC3,然后开启PC1和PC4,最后关掉PC2。”

通过 LLM 解析层,这个复杂的需求可以被拆解为多个明确的任务步骤:

  1. Step 1: 关闭 PC3
  2. Step 2: 开启 PC1
  3. Step 3: 开启 PC4
  4. Step 4: 关闭 PC2

模型再根据这些步骤依次执行任务,或者将并行任务(如开启PC1和PC4)同时处理,最终确保任务按预期完成。

4 如何设计解析层

要设计一个高效的 LLM 解析层,需要注意以下几个关键点:

  1. 鲁棒的指令拆解能力:解析层需要能够理解复杂的自然语言指令,并准确提取出任务的关键动词和作用对象。比如,“关闭”“打开”等动词以及“PC1”“PC4”等对象的识别必须准确无误。
  2. 任务依赖关系的识别:解析层必须能够处理任务之间的依赖关系,确保前后顺序的合理性。在需要时,能够区分并行任务与串行任务。
  3. 应对模糊指令的能力:用户的自然语言可能包含模糊表达,如“打开所有电脑”,解析层需要能够处理这种模糊需求,推理出上下文中的具体执行对象。
  4. 灵活性与适应性:解析层还需要能够应对不同领域的任务需求,具有足够的灵活性来解析不同语境下的指令。

5 总结

通过增加一个 LLM 解析层,可以极大提高多任务处理场景中指令解析的准确性和执行效率。它不仅可以将复杂的自然语言指令拆解为多个明确的操作步骤,还能够根据任务间的依赖关系调整顺序,生成具体的工具命令,确保任务的正确执行。


相关文章
|
14天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
71 2
|
24天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
54 2
|
28天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
25天前
|
弹性计算 自然语言处理 安全
国内基础大模型的独立性及应用大模型的依赖性
本文探讨了国内基础大模型(如阿里巴巴的通义千问)的独立性及其应用大模型的依赖性。详细分析了这些模型的研发过程、应用场景及技术挑战,包括数据收集、模型架构设计和算力支持等方面。同时,讨论了微调模型、插件式设计和独立部署等不同实现方式对应用大模型的影响。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
7天前
|
自然语言处理 开发者
多模态大模型LLM、MLLM性能评估方法
针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
大模型强崩溃!Meta新作:合成数据有剧毒,1%即成LLM杀手
在人工智能领域,大型语言模型(LLMs)的快速发展令人瞩目,但递归生成数据可能导致“模型崩溃”。Meta的研究揭示,模型在训练过程中会逐渐遗忘低概率事件,导致数据分布偏差。即使少量合成数据(如1%)也会显著影响模型性能,最终导致崩溃。研究强调保留原始数据的重要性,并提出社区合作和技术手段来区分合成数据和真实数据。论文地址:https://www.nature.com/articles/s41586-024-07566-y
23 2
|
11天前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
32 2
|
19天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
43 1
|
19天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
51 1