【AI系统】计算图的控制流实现
计算图作为有向无环图(DAG),能够抽象神经网络模型,但在编程中遇到控制流语句(如if、else、while、for)时,如何表示成为难题。引入控制流后,开发者可构建更复杂的模型结构,但部署含控制流的模型至不支持Python的设备上较为困难。目前,PyTorch仅支持Python控制流,而TensorFlow通过引入控制流原语来解决此问题。计算图的动态与静态实现各有优劣,动态图易于调试,静态图利于优化。
【AI系统】动态图与静态图转换
从 TensorFlow、PyTorch 到 PaddlePaddle、MindSpore、MegEngine,主流 AI 框架经历了动静分离、动静结合到动静统一的发展过程。这些框架通过动态图转静态图技术,实现了计算效率与灵活性的平衡,显著提升了 AI 开发效率和产品应用的便利性。
【AI系统】动手实现 PyTorch 微分
本文介绍了使用操作符重载(OO)编程方式实现的自动微分,特别是采用反向模式(Reverse Mode)的实现方法。文中详细解释了操作符重载的基本概念及其在自动微分中的应用,以及反向模式的工作原理。通过 Python 示例代码,演示了如何手动实现类似 PyTorch 中自动微分的核心机制,包括定义 `Variable` 类、`Tape` 结构以及实现基本的数学运算符重载。最后,通过一个具体的数学函数示例展示了如何利用上述机制计算梯度,帮助读者理解反向模式自动微分的全过程。
【AI系统】微分实现方式
本文详细介绍了自动微分的三种实现方法:基本表达式、操作符重载和源代码转换。每种方法都有其特点和适用场景,包括它们的实现原理、优缺点。自动微分是机器学习和深度学习中的关键技术,理解这些实现方式有助于更好地掌握其背后的数学原理和工程实践。文中还提到了具体的应用案例和工具,如PyTorch和MindSpore,展示了这些方法在实际项目中的应用。
【AI系统】动手实现自动微分
本章介绍如何实现自动微分,重点讲解前向自动微分的原理及Python实现方法。通过操作符重载,将程序分解为基础表达式组合,利用链式法则计算导数。示例代码展示了如何使用自定义类`ADTangent`实现加、减、乘、log、sin等操作的自动微分,验证了与PyTorch和MindSpore等框架的一致性。
Beta分布与汤普森采样:智能决策系统概率采样的理论基础
在现代技术领域,算法决策优化成为核心竞争力的关键。Meta、Netflix和亚马逊等公司通过广告位置、缩略图及产品推荐的优化,显著提升了用户体验和商业效益。这些优化背后的共同点是采用了基于Beta分布的汤普森采样算法,有效解决了决策系统中探索与利用的平衡问题。通过从概率分布中随机采样来做出决策,汤普森采样不仅保证了对已知良好选项的充分利用,还维持了对潜在更优选项的探索,从而在实践中实现了高效且自适应的决策过程。
[oeasy]python050_如何删除变量_del_delete_variable
本文介绍了Python中如何删除变量,通过`del`关键字实现。首先回顾了变量的声明与赋值,说明变量在声明前是不存在的,通过声明赋予其生命和初始值。使用`locals()`函数可查看当前作用域内的所有本地变量。进一步探讨了变量的生命周期,包括自然死亡(程序结束时自动释放)和手动删除(使用`del`关键字)。最后指出,删除后的变量将无法在当前作用域中被访问,并提供了相关示例代码及图像辅助理解。