技术抉择:微调还是 RAG?——以春节祝福生成为例
本文以春节祝福生成为例,剖析微调与RAG的本质差异:RAG解决“信息缺失”,微调重塑“表达偏好”。当任务重风格、重分寸、重一致性(如拜年话术),模型缺的不是知识,而是默认的得体表达——此时微调比RAG更直接、可控、高效。
微调落地:春节祝福 AI 是怎样炼成的
本文以春节祝福AI为例,深入剖析微调落地的典型场景:模型能力足够,但“人情味”不足。它揭示微调的核心价值——不教新知识,而是将符合场景的表达偏好固化为默认输出,30分钟即可见效。适合表达敏感、指标难量化、Prompt难稳定的业务场景。
轻量化部署:让你的祝福模型在小显卡上跑起来
本文揭秘春节祝福AI的轻量化部署:无需昂贵GPU,消费级显卡即可运行!通过INT4量化(模型缩至1/8)、LoRA微调(仅训MB级参数)及QLoRA组合,搭配vLLM推理优化与K8s弹性扩缩容,7B小模型高效生成祝福语。低成本、低门槛、高可用——大模型应用,人人可及。
从通用模型到祝福专家:微调让AI更懂你的心
春节祝福太难写?微调技术可将通用大模型“定制”为专属祝福专家:喂入几十条高质量示例,用LoRA轻量训练几小时,即可生成温馨、商务、俏皮等风格各异、紧扣春节元素(红包、团圆、春联等)的个性化祝福,消费级显卡即可完成。
ModelScope魔搭社区发布月报 -- 26年2月
临近年关,ModelScope迎来春节模型发布潮:Qwen3、GLM-4.7、MiniMax M2.1等大模型密集上新;AIGC生图、语音合成、具身智能全面突破;OpenAPI、OAuth、Gallery等生态基建同步升级,加速AI开源普惠。(239字)
《GraphQL状态图建模与低时延控制能力解析》
本文围绕物联网场景下GraphQL在设备状态图查询与实时指令调度中的应用展开深度分析,从态联拓扑、柔性查询、边缘适配等角度,系统阐述其在结构化状态获取、按需数据拾取、统一交互口径等方面的核心价值,同时揭示复杂拓扑解析开销、终端算力约束、跨域链路损耗等现实局限。文章结合真实工程实践思路,探讨实时订阅机制在低延迟指令控制中的能力边界,明确网络波动、并发密度、资源竞争对实时性的影响。
32B大模型塞进消费级显卡?我用“人情味”做了场春节实验
本文分享用LoRA+量化在单卡/双卡上轻量微调Qwen3-32B,打造懂关系、有分寸的春节祝福助手。聚焦“人情世故”六要素填空式训练,自建3000+场景化数据,借助LLaMA-Factory Online实现低门槛实战,让AI从背模板转向调记忆。(239字)
从群发文案到私人定制:手把手教你微调一个懂人情世故的拜年助手
本文揭秘如何用微调技术让AI写出“专属感”祝福语:拆解人情世故为6个可量化要素,人工打磨3000条高质量种子数据,30分钟即让Qwen3学会“看人下菜碟”。结果不再是千篇一律的群发模板,而是带共同记忆、有温度的真挚表达——技术不止提效,更可传递心意。(239字)