为什么你调的不是参数,而是风险
大模型微调不是调参,而是风险管理:学习率决定偏离幅度,batch size影响偏差放大,epoch迫使模型“选边”,LoRA rank拓展失控空间。参数非“强度 knob”,实为“风险杠杆”——每次调整都在重分配行为分布。成熟微调,重在理解并可控承担风险。
大模型微调完全指南:原理、实践与平台选择,让AI真正为你所用
微调是让通用大模型成为垂直领域“专家”的关键路径:通过小规模、高质量数据定向优化模型参数,实现专业适配。相比提示词工程的临时性,微调能内化知识、提升准确性与风格一致性。LoRA等高效微调技术大幅降低门槛,百条数据+单卡即可完成,兼顾效果与成本。(239字)
大模型微调参数设置 —— 从入门到精通的调参指南
本文系统解析大模型微调核心参数:学习率、批次大小、训练轮次、权重衰减、LoRA秩等的作用机制与设置技巧,结合LLaMA-Factory实战演示,帮助初学者避开“黑箱”误区,在有限算力下实现高效、稳定微调。
LoRA 参数调得好,模型效果差不了——微调核心超参数完整指南
本文深入解析LoRA/QLoRA核心参数(r、alpha、target_modules、dropout等)的作用机制与调优策略,涵盖低秩原理、缩放设计、模块选择、量化适配及实战经验,助力开发者高效微调大模型,显著降低显存需求并提升效果。(239字)