探索AIGC未来:CPU源码优化、多GPU编程与中国算力瓶颈与发展
近年来,AIGC的技术取得了长足的进步,其中最为重要的技术之一是基于源代码的CPU调优,可以有效地提高人工智能模型的训练速度和效率,从而加快了人工智能的应用进程。同时,多GPU编程技术也在不断发展,大大提高人工智能模型的计算能力,更好地满足实际应用的需求。 本文将分析AIGC的最新进展,深入探讨以上话题,以及中国算力产业的瓶颈和趋势。

Havenask入门系列第10节:Havenask Kubernetes模式
hape工具参考:https://havenask.net/# /doc/sql/petool/intro kubernetes部署参考: https://havenask.net/# /doc/v1-2-0/sql/petool/startcluster/k8smode k8s模式问题排查:https://havenask.net/# /doc/v1-2-0/sql/petool/problem# k8s%E6%A8%A1%E5%BC%8F%E9%97%AE%E9%A2%98%E6%8E%92%E6%9F%A5 Havenask是阿里巴巴自主研发的大规模分布式搜索引擎,主要专注于智能搜索和海量数据实时检索,其核心能力广泛应用于阿里巴巴内部的众多业务,如淘宝、天猫商品搜索,盒马搜索,菜鸟物流订单实时检索等。并于2022年11月对外正式开源,具有灵活的定制和开发能力,支持算法快速迭代,帮助客户和开发者量身定做适合自身业务的智能搜索服务,助力业务增长。 这次系列课程邀请了负责Havenask研发工作的技术专家们,为大家全面讲解Havenask的相关知识,通过课程可以了解到产品能力、架构原理、安装部署等内容,同时还有详细的操作演示,帮助大家更好了解和使用产品。 课程介绍:此视频为Havenask入门教程系列的第9节课《问题排查》,将对Havenask使用中4块内容进行讲解。 ● Hape运维脚本 ● 集群 ● 表创建 ● 数据写入与查询 我们期望通过课程可以帮助您更好的使用Havenask,欢迎广大开发者加入项目开发,共建高质量的搜索引擎,共同推进国产化开源搜索引擎技术快速发展,普惠更多的开发者和企业。 此外,对于有使用需求的企业级开发者,我们也已在阿里云上提供了基于 Havenask 打造的全托管、免运维的一站式对话式搜索服务——阿里云 OpenSearch,欢迎企业级开发者们试用体验。 阿里云 OpenSearch 官网:https://www.aliyun.com/product/opensearch 官网地址:https://havenask.net/ Github:https://github.com/alibaba/havenask 欢迎钉钉扫码加入 Havenask 开源官方技术交流群:78c5cfa61c64a55cdeb0655ac7eb2849.png
DataWorks这个 starrocks 的节点有问题,数字不能识别。如何解决?
使用flinkcdc同步mysql至mysql的数据,只会同步一次,修改源表后目标表没有变化
Flink oracle cdc 读oracle的主备库,由于备库是只读权限,是不是没法实现啊?
产品经理-用户体验五要素 - AxureMost
《用户体验五要素》介绍了构建成功用户体验设计的五个层面:战略层、范围层、结构层、框架层和表现层。战略层明确产品目标与用户需求;范围层定义功能和内容需求;结构层规划交互与信息架构;框架层设计界面、导航和信息布局;表现层则通过视觉设计创造感知体验。每一层都依赖于其下一层,形成自下而上的连锁效应,确保各要素相互作用,共同实现用户体验目标。

哪些特征导致过拟合?使用ParShap 方法精准定位导致模型泛化能力下降的关键特征
本文探讨了如何识别导致模型过拟合的特征,提出了一种基于SHAP值和偏相关性的新方法——ParShap。通过分析德国健康登记数据集,作者展示了传统特征重要性无法准确反映特征在新数据上的表现,而ParShap能有效识别出过拟合特征。实验表明,移除这些特征可以显著减少过拟合现象,验证了该方法的有效性。

微财基于 Flink 构造实时变量池
本文整理自微财资深数据开发工程师穆建魁老师在 Flink Forward Asia 2024 行业解决方案(一)专场中的分享。主要涵盖三部分内容:1) 基于 Flink 构建实时变量池,解决传统方案中数据库耦合度高、QPS 上限低等问题;2) 选择 Flink 进行流式计算的架构选型(Kappa 架构)及开发效率提升策略,通过数据分层优化开发流程;3) 实时变量池架构与多流关联优化实践,确保高效处理和存储实时变量,并应用于公司多个业务领域。
Dataworks入门
很久前试用DataWorks,初版功能完善,通过提工单解决问题并学会日志分析。Copilot接入后,发现其SQL功能未严格遵循阿里云官方文档,修改的SQL不尽如人意,有待提升。整体而言,DataWorks功能强大、可定制化高、集成方便,在大数据处理方面表现出色。
阿里云上的IaC和自动化
本文介绍了阿里云上的自动化与基础设施即代码(IaC)的整体情况。阿里云提供了2万多个API,每日调用量达300亿次,同比增长40%。文中探讨了自动化集成的方式,包括通过API、SDK和IaC工具,并分析了不同场景下的选择策略。对于资源管理较少的企业,控制台界面更合适;而对于高频变更和复杂操作,API和IaC是更好的选择。此外,文章还提到了低代码/无代码解决方案及AI在IaC和自动化中的应用前景。
推理降本与提升资源效率的实践
本课程从业务角度探讨大模型推理部署及资源利用率提升。首先分析大模型与GPU发展趋势,包括模型开源、规模增长及多模态能力增强;其次介绍高效部署大模型推理业务的步骤,涵盖业务场景选择、架构优化及显存规划;接着讲解如何通过DeepCPU-LLM框架和DeepNCCL通讯库优化推理效率;最后探讨通过KuberGPU实现细粒度GPU资源管理,提升整体资源利用率,降低推理成本。
产品经理-B 端与C端
B端与C端是IT互联网产品经理的类型划分,分别面向企业和个人消费者。C端产品如微信、淘宝,注重用户体验和快速迭代;B端产品如CRM系统、ERP软件,强调功能复杂性和定制化服务。此外,还有G端产品,主要服务于政府机构,注重数据安全和合规性。产品经理起源于20世纪20年代末的美国宝洁公司,随着互联网的发展,该角色在IT领域变得愈加重要。

DataWorks 数据资产治理
DataWorks 数据资产治理(原数据治理中心)可根据预先配置的治理计划,自动发现平台使用过程中数据存储、任务计算、代码开发、数据质量及安全等维度存在的问题,并通过健康分量化评估,从全局、工作空间、个人等多个视角,以治理报告及排行榜呈现治理成果,帮助您高效达成治理目标。同时,还提供业务资产管理、资产分析、任务资源消耗明细、费用预估等功能,帮助您有效掌握各类资源的使用详情。
SPAR:融合自对弈与树搜索的高性能指令优化框架
SPAR框架通过自对弈和树搜索机制,生成高质量偏好对,显著提升了大语言模型的指令遵循能力。实验表明,SPAR在指令遵循基准测试中表现优异,尤其在模型规模扩展和判断能力方面展现出显著优势。

TurboAttention:基于多项式近似和渐进式量化的高效注意力机制优化方案,降低LLM计算成本70%
**TurboAttention**提出了一种全新的LLM信息处理方法。该方法通过一系列优化手段替代了传统的二次复杂度注意力机制,包括稀疏多项式软最大值近似和高效量化技术。
基于Copula分布的合成数据采样:保持多维数据依赖结构的高效建模方法
本文深入探讨了Copula的基础理论、运作机制及其在数据科学领域的应用。Copula作为一种数学框架,能够将随机变量间的依赖关系与其边际分布分离,特别适用于处理非线性依赖关系或异质分布变量。文章通过年龄与收入的关系分析,展示了Copula在多元分析中的独特优势,并介绍了高斯Copula的具体应用实例。此外,还详细讲解了Copula在合成数据生成中的应用,验证了合成数据在训练机器学习模型时的有效性。

2024FFA分论坛-数据集成2
FFA2024数据集成专场由Apache Flink核心贡献者与来自阿里云智能、杭州银行、光大银行、货拉拉、数新智能、镜舟科技等公司的一线技术专家聚焦于实时技术在数据集成场景的价值与发展,讨论实时技术如何提升数据处理的全链路时效性,分析如何基于 Flink 设计实时数据集成框架,以及实时数据集成技术在不同业务领域的最佳实践。
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。

从方向导数到梯度:深度学习中的关键数学概念详解
方向导数衡量函数在特定方向上的变化率,其值可通过梯度与方向向量的点积或构造辅助函数求得。梯度则是由偏导数组成的向量,指向函数值增长最快的方向,其模长等于最速上升方向上的方向导数。这两者的关系在多维函数分析中至关重要,广泛应用于优化算法等领域。
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。

为什么PHP爬虫抓取失败?解析cURL常见错误原因
豆瓣电影评分是电影市场的重要参考,通过网络爬虫技术可以高效采集评分数据,帮助电影制作和发行方优化策略。本文介绍使用PHP cURL库和代理IP技术抓取豆瓣电影评分的方法,解决反爬机制、网络设置和数据解析等问题,提供详细代码示例和优化建议。

使用 Puppeteer 绕过 Captcha:实现商家数据自动化采集
本文介绍了如何使用Puppeteer结合代理IP和用户伪装技术,轻松绕过大众点评的Captcha验证,实现商家信息的高效采集。通过配置Puppeteer、设置代理和用户伪装参数、模拟人类操作等步骤,成功提取了目标页面的数据。该方法不仅提高了爬虫的稳定性和隐蔽性,还为市场研究和商业分析提供了有力支持。注意,数据采集需遵守法律法规及网站政策。

解读双编码器和交叉编码器:信息检索中的向量表示与语义匹配
在信息检索领域(即从海量数据中查找相关信息),双编码器和交叉编码器是两种至关重要的工具。它们各自拥有独特的工作机制、优势和局限性。本文将深入探讨这两种核心技术。
如何遵守孔夫子旧书网的使用规则?
使用孔夫子旧书网需先注册并认证,获得API权限后,须遵守API调用协议,包括正确使用公共参数及业务参数。平台强调版权保护、用户隐私权及免责声明,同时要求用户遵守法律法规,确保信息安全合规。遇技术问题可寻求官方支持。
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。

为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
电商信息指南:API接口淘宝关键词、店铺所有商品获取
要获取淘宝关键词商品数据和店铺所有商品的API接口,需先注册淘宝开放平台账号并创建应用,获取API密钥。接着,使用密钥获取访问令牌,详细阅读API文档,构造并发送API请求,解析响应数据。特别地,使用`item_search_shop`接口可获取店铺内所有商品信息。
高效档案管理案例介绍:文档内容批量结构化解决方案解析
档案文件内容丰富多样,传统人工管理耗时低效。思通数科AI平台通过自动布局分析、段落与标题检测、表格结构识别、嵌套内容还原及元数据生成等功能,实现档案的高精度分块处理和结构化存储,大幅提升管理和检索效率。某历史档案馆通过该平台完成了500万页档案的数字化,信息检索效率提升60%。
如何实现一个项目,小白做项目-java
本教程涵盖了从数据库到AJAX的多个知识点,并详细介绍了项目实现过程,包括静态页面分析、数据库创建、项目结构搭建、JSP转换及各层代码编写。最后,通过通用分页和优化Servlet来提升代码质量。
Java安全配置管理
本文介绍了Java应用中安全配置管理的最佳实践,包括配置文件分离、敏感信息加密、配置验证、运行时配置管理和最佳实践总结。通过这些方法,可以有效提升应用配置的安全性和可维护性。具体措施包括按环境分离配置文件、使用加密工具保护敏感信息、实施配置验证和变更监控等。
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
【大语言模型】ACL2024论文-01 Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language
本文介绍了Quantized Side Tuning(QST)方法,旨在解决大型语言模型(LLMs)微调过程中的内存效率和速度问题。QST通过将模型权重量化为4位,并引入一个与LLM分离的侧网络,显著减少了内存占用并加快了微调速度,同时保持了与现有技术相当的性能。实验表明,QST可以将总内存占用减少高达2.3倍,并将微调速度提高高达3倍。
如何布局歌词结构:写歌词的技巧大公开,妙笔生词AI智能写歌词软件
在歌词创作中,结构布局如同建筑的骨架,决定歌词的稳固与美感。本文揭示了歌词结构布局的奥秘,从吸引人的开头、核心的中间部分到点睛的结尾,帮助你写出动人歌词。此外,推荐使用《妙笔生词智能写歌词软件》,其多种 AI 功能可助你一臂之力。

基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。