Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
反向海淘代购独立站:功能解析与搭建指南
“反向海淘”指海外消费者购买中国商品的现象,体现了中国制造的创新与强大。国产商品凭借高性价比和丰富功能,在全球市场备受欢迎。跨境电商平台的兴起为“反向海淘”提供了桥梁,而独立站因其自主权和品牌溢价能力逐渐成为趋势。一个成功的反向海淘代购独立站需具备多语言支持、多币种支付、物流跟踪、商品展示、购物车管理等功能,并通过SEO优化、社交媒体营销等手段提升运营效果。这不仅助力中国企业开拓海外市场,还推动了品牌全球化进程。
数据分析异步进阶:aiohttp与Asyncio性能提升
本项目基于aiohttp与Asyncio开发异步爬虫,目标采集今日头条新闻数据。初期因网站限制机制导致请求异常,通过设置代理IP、Cookie和UserAgent解决拦截问题,并优化异步任务调度与异常捕获提升性能。方案包括动态代理池、统一请求头配置及日志监控,确保高并发下的稳定性。示例代码展示代理IP、请求头设置与错误处理方法,为类似项目提供参考。
Hologres Dynamic Table快速入门
本文由Hologres PD赵红梅分享,主题为Dynamic Table快速入门。内容分为三部分:一是介绍Dynamic Table,包括其在实时数仓中的应用场景及技术实现;二是讲解Dynamic Table的使用方法与实操,涵盖全量、增量及混合刷新模式的创建与操作;三是提供使用建议,如选择刷新模式、监控延迟、分区表应用及计算资源分配等。此外,还对比了Dynamic Table与其他产品(如DIS异步物化视图和Snowflake Dynamic Tables)的功能差异,并推荐下载Hologres 3.0实践手册以深入了解一体化实时湖仓平台的最新功能。
阿里云 OpenSearch 智能问答版 ➕ DeepSeek R1——打造 B站 UP 主题爆款选题器
阿里云OpenSearch智能问答版+DeepSeek R1,支持多模态数据和联网搜索。以B站up主题爆款选题器为例,打造你的个人专属AI助手,开启你的智能搜索之旅,让AI赋能你的开发! (转载自哔哩哔哩,已获得原作者@老麦的工具库 授权。原视频地址:https://www.bilibili.com/video/BV1M8QmYJEzm/)
根据空域图信息构造飞机航线图以及飞行轨迹模拟matlab仿真
本程序基于MATLAB2022A实现空域图信息的飞机航线图构建与飞行轨迹模拟。空域图是航空领域的重要工具,包含航线、导航点、飞行高度层等信息。程序通过航路网络建模(节点为机场/导航点,边为航线段)构建航线图,并依据飞行规则规划航线。飞行轨迹模拟包括确定起飞点与目的地、设置航路点及飞行高度层,确保飞行安全。完整程序运行结果无水印,适用于航空飞行计划制定与研究。
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
淘宝商品详情优惠券API接口全攻略
淘宝商品详情优惠券API接口助力电商精准营销。通过商品ID,开发者可精准检索与特定商品相关的优惠券信息,包括面额、使用门槛、领取条件、有效期等详细数据,并实时监测优惠券状态。此接口支持个性化筛选参数,如优惠券面额范围和类型,返回JSON格式的优惠券列表及状态信息,满足数据整合、营销活动策划等需求,提升用户体验和运营效率。示例代码展示了Python调用方法,帮助快速集成。 供稿者:Taobaoapi2014
1688 商品详情API接口(1688API 系列)
1688 商品详情 API 接口是电商应用开发中的关键工具,尤其适用于整合 1688 平台的商品数据。该接口提供商品的基础属性、价格、库存、图片、描述及商家信息等多维度数据,支持 HTTP GET 和 POST 请求方式。通过必填的商品 ID 及可选的语言参数等,开发者能精准获取并展示商品详情,提升用户体验和决策效率。响应数据包括商品名称、类目、品牌、价格区间、库存、图片列表、详细描述及商家信息等,帮助技术员高效集成接口,实现与 1688 平台的无缝对接。供稿者:Taobaoapi2014。
趋势还是噪声?ADF与KPSS检验结果矛盾时的高级时间序列处理方法
在时间序列分析中,ADF(增广迪基-富勒)和KPSS检验用于评估数据的平稳性。当ADF检验失败而KPSS检验通过时,表明序列具有确定性趋势但整体平稳。
LLM模型添加自定义Token代码示例:为Llama 3.2模型添加思考与回答标记
本文将介绍如何为大型语言模型(LLM)添加自定义token并进行训练,使模型能够有效地利用这些新增token。以Llama 3.2模型为基础,实现了类似DeepSeek R1中think和answer标记功能的扩展方法,通过监督微调使模型学习使用这些标记进行推理过程与答案输出的区分
住宅IP和运营商IP有什么区别?
随着数字化发展,网络安全与隐私保护日益重要,代理IP成为热门选择。住宅IP由ISP分配给家庭用户,通常是动态的,适合日常上网,费用较低,且具有较高隐私保护。运营商IP则分配给企业或数据中心,多为静态,适用于高稳定性和带宽需求的业务,安全性更高但成本也更高。两者在用途、特性和成本上存在显著差异,用户可根据需求选择。
Logic-RL: 小模型也能强推理,通过基于规则的强化学习提升大语言模型结构化推理能力
这篇论文探讨了基于规则的强化学习(RL)如何提升大型语言模型(LLM)的高级推理能力。通过在程序生成的逻辑谜题上训练并强制执行结构化思考,即使是较小的模型也能开发出可转移的问题解决策略。研究引入了多层次奖励系统,包括格式、答案、推理一致性和反思奖励,以引导模型形成严谨的推理过程。实验结果表明,这种方法不仅提高了模型在逻辑任务上的性能,还在数学问题解决、代码调试等领域展现出显著的泛化能力。此外,该方法在较小模型上实现了与大模型相当甚至更优的推理表现,为资源受限环境下的高效推理提供了新途径。
【赵渝强老师】Kafka的消费者与消费者组
Kafka消费者是从Kafka集群中消费数据的客户端。单消费者模型在数据生产速度超过消费速度时会导致数据堆积。为解决此问题,Kafka引入了消费者组的概念,允许多个消费者共同消费同一主题的消息。消费者组由一个或多个消费者组成,它们动态分配和重新分配主题分区,确保消息处理的高效性和可靠性。视频讲解及示意图详细展示了这一机制。
解锁 DeepSeek API 接口:构建智能应用的技术密钥
在数字化时代,智能应用蓬勃发展,DeepSeek API 作为关键技术之一,提供了强大的自然语言处理能力。本文详细介绍 DeepSeek API,并通过 Python 请求示例帮助开发者快速上手。DeepSeek API 支持文本生成、问答系统、情感分析和文本分类等功能,具备高度灵活性和可扩展性,适用于多种场景。示例展示了如何使用 Python 调用 API 生成关于“人工智能在医疗领域的应用”的短文。供稿者:Taobaoapi2014。
ElasticSearch AI Assistant 系列 2 —— Kibana 自带样例挑战
本视频介绍了如何在Elastic平台上配置AI助手以兼容并连接阿里巴巴的通义千问的第二部分——Kibana 自带样例挑战。 演示: 挑战1:ES集群和索引交互操作 1.1 请列出当前集群的索引,不要包含隐藏索引或者系统索引 1.2 比较kibana_sample_data_ecommerce和kibana_sample_data_flights两个索引到字段,有哪些重复的字段 1.3:复制kibana_sample_data_ecommerce的索引定义,并创建一个新的索引my_sample_data_ecommerce 1.4:将kibana_sample_data_ecommerce数据重新索引到my_sample_data_ecommerce索引 自行挑战示例 挑战2:智能数据分析和可视化 自然语言2ES|QL 2.1:可以分析kibana_sample_data_ecommerce的字段之间的关系,随便给我生成一张统计图表,并解释这个图表表达的含义吗, 使用ESQL查询语言 2.2:能帮我找出来卖的最多的品类最多是哪个吗 2.3:列出销售额前5的品类
手把手教你调出“懂你”的AI:大模型微调实战与资源管理
本文深入浅出讲解大模型微调核心知识:用生活化比喻解析学习率、训练轮数、批量大小、截断长度和LoRA秩五大关键参数;提供适配不同显存的实操配置表;分享Liger Kernel、DeepSpeed等省显存技巧;并强调定量、定性与效率三维评估。零基础也能快速上手定制专属AI。
向量数据库实战:从建库到第一次翻车
向量数据库首次“建库成功”反而是最危险时刻——表面跑通,实则埋下隐患。真实挑战不在“能否检索”,而在“检出内容能否支撑正确决策”。数据规模扩大、类型变杂后,切分失当、chunk等价化、TopK抖动等问题集中爆发。翻车本质是知识组织问题,而非工具选型问题。
隐私合规红线不能碰:大模型微调3大重灾区防护手册
本文聚焦大模型微调中训练数据、中间产物与部署链路三大隐私泄露重灾区,剖析90%开发者易踩的技术陷阱,从分层脱敏、差分隐私到权限管控,提供全链路可落地的防护方案,并结合性能与安全双重验证,助力企业实现合规与效能双赢。
基于yolov10的吸烟检测系统
本研究基于YOLOv10深度学习算法,构建高精度、实时化吸烟行为检测系统。针对传统方法在复杂场景下检测率低、效率差的问题,利用YOLOv10的动态稀疏注意力与多尺度融合优势,提升小目标与遮挡情况下的识别能力,结合五分类体系实现对香烟、烟雾、电子烟等多目标精准定位。系统支持GPU加速,达30帧/秒以上实时检测,可广泛应用于医院、机场等公共场所,助力无烟环境建设与智能安防升级,推动禁烟政策高效落地。
【AI大模型面试宝典四】- 基础架构篇
【AI大模型知识干货系列】深度解析Transformer位置编码:从绝对到相对,拆解Sinusoidal、RoPE、ALiBi等核心机制,对比优劣,直击面试高频问题。每篇聚焦一个知识点,助你系统掌握大模型关键技术,紧跟AI浪潮!欢迎关注、点赞、批评指正~
零代码基础也能懂的LoRA微调全指南
LoRA(低秩适应)让普通人也能用消费级显卡高效微调大模型。它不改动原模型,仅添加小型“适配模块”,以0.1%-1%的参数量实现接近全量微调的效果,快速打造专属AI助手,推动AI民主化。
复旦大学×阿里云产学合作协同育人合作案例
复旦大学联合阿里云开展“天池AI案例100开发”项目,赵卫东团队依托产业级平台构建“理论-实训-实战”教学新体系,开发4大综合性AI案例,覆盖图像识别、自然语言处理等方向。通过MOOC、教材、师资培训多渠道辐射全国,累计惠及超13万学习者,形成可复制的产教融合示范范式,推动人工智能人才培养与产业需求无缝对接。(238字)
京东商品评论API使用指南
京东商品评论API是京东开放平台提供的核心接口,用于查询指定SKU的用户评论数据,涵盖评分、内容、晒单图片、追评等信息。适用于电商分析、口碑监控等场景。需通过京东联盟申请appkey/appsecret授权调用,遵循平台规则与频率限制,严禁非合规爬取。
详解RAG五种分块策略,技术原理、优劣对比与场景选型之道
RAG通过检索与生成结合,提升大模型在企业场景的准确性与可控性。分块策略是其核心,直接影响检索效果与生成质量。本文系统解析五种主流分块方法:固定大小、语义、递归、基于结构及LLM分块,对比其优缺点与适用场景,并提出组合优化建议,助力构建高效、可信的RAG系统。
大模型推理与应用术语解释
简介:大语言模型核心技术涵盖推理、生成式AI、检索增强生成(RAG)、提示工程、上下文学习、代理、多模态学习与语义搜索。这些技术共同推动AI在内容生成、知识检索、智能决策和跨模态理解等方面的能力跃升,广泛应用于问答系统、创作辅助、企业服务与自动化任务,正重塑人机交互与信息处理范式。(238字)
1688店铺所有商品API使用指南
本文详解1688店铺商品API的使用,涵盖接口摘要、概述、Python请求示例及注意事项。通过该API可获取商品列表、详情等核心数据,适用于店铺管理、ERP系统与数据分析。结合代码演示,助开发者快速完成对接,实现高效数据采集与应用。(239字)
十一、Hive JOIN 连接查询
在 Hive 的世界里,JOIN 就像是数据间的红线,把原本分散在各自表里的信息串联起来。无论是内连接、外连接,还是 Hive 特有的左半连接,都各有“武功招式”,适用于不同场景。
八、HQL DML数据导入与操作
在 Hive 中,写好一条 INSERT,远不止“把数据塞进去”那么简单。本文将用清晰的语法讲解和实用案例,带你一步步掌握 LOAD DATA、INSERT ... SELECT、动态分区、CTAS 等核心用法。从数据导入、表间写入到多表分发、HDFS 导出,覆盖 Hive DML 的关键技能,让你的数据处理更高效、更得心应手。
支持"同款搜索"(精确匹配)和"相似搜索"(模糊匹配)两种模式
图搜接口对图片的一个要求:图片不要大于2兆,600*600像素大小,要符合系统规则,图片尽量清晰, 图片越小越好,处理API返回的错误码和异常情况。
U盘如何防泄密?这几个技术手段迎刃而解
安得卫士提供U盘防泄密四大核心措施:准入控制、操作管控、行为审计与离线防护。通过注册授权、权限细分、敏感数据拦截、全流程操作审计及加密外发控制,实现U盘数据全周期安全防护,有效防范数据泄露风险。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。