【图像分割】基于模拟退火结合粒子群算法优化图像分割含Matlab代码

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介: 【图像分割】基于模拟退火结合粒子群算法优化图像分割含Matlab代码

 1 内容介绍

图像分割是一种重要的图像技术‚它不仅受到人们广泛的重视‚其研究在不断深入‚而且也在实际中得到了大量的应用。图像分割是应用一种或多种运算将图像分成一些具有类似特征(如颜色、纹理、密度等)的区域‚主要方法有阈值法和区域方法两大类。前者是利用灰度频率信息进行分割‚而后者利用局部空间信息进行分割。图像分割是一种重要的图像技术‚它不仅受到人们广泛的重视‚其研究在不断深入‚而且也在实际中得到了大量的应用。图像分割是应用一种或多种运算将图像分成一些具有类似特征(如颜色、纹理、密度等)的区域‚主要方法有阈值法和区域方法两大类。前者是利用灰度频率信息进行分割‚而后者利用局部空间信息进行分割。

采用了一种模拟退火思想的粒子群算法与最大类间方差法相结合的快速阈值分割法对图像进行分割。用粒子群优化算法来搜索阈值向量,每个粒子代表一个可行的阈值向量,通过粒子间的协作来获得最优阈值。为了提高收敛速度,把模拟退火的思想应用在粒子群算法中,最后仿真结论表明,该方法在继承标准粒子群算法原理简单、易于实现、协同搜索等优点的同时,还避免了标准粒子群算法的收敛速度慢问题,有更强的寻优能力,得到理想的结果的同时计算量大大减少。权衡分割精度和计算效率两个方面,文中方法不失为一种实用有效的图像分割算法。

image.gif编辑

image.gif编辑

2 仿真代码

%% PSO + SA Image Segmentation

% Empowering traditional clustering techniques with evolutionary

% algorithms, here two strong ones, namely particle swarm optimization and

% simulated annealing are used.

% Enjoy!!!

%% Cleaning the Stage

clc;

clear;

close all;

warning('off');

%% Reading Image

MainOrg=imread('tst.jpg');

Gray=rgb2gray(MainOrg);

InpMat= double(MainOrg);

%% Basics

[s1,s2,s3]=size(InpMat);

R = InpMat(:,:,1);

G = InpMat(:,:,2);

B = InpMat(:,:,3);

X1 = (R-min(R(:)))/(max(R(:))-min(R(:)));

X2 = (G-min(G(:)))/(max(G(:))-min(G(:)));

X3 = (B-min(B(:)))/(max(B(:))-min(B(:)));

X = [X1(:) X2(:) X3(:)];

%% Cluster Numbers

clusteres = 7;

%% Plot PSO-SA Segmented Result

disp(['Error Is: ' num2str(Error)]);

figure('units','normalized','outerposition',[0 0 1 1])

subplot(2,3,1)

subimage(MainOrg);title('原始');

subplot(2,3,2)

subimage(Gray);title('灰色');

subplot(2,3,3)

imshow(SA_Segmented,[]);

title(['粒子群算法优化模拟退火算法灰色分段, 集群 = ' num2str(clusteres)]);

subplot(2,3,4)

imshow(ColorSeg,[]);

title(['粒子群算法优化模拟退火算法彩色分段, 集群 = ' num2str(clusteres)]);

subplot(2,3,5)

imshow(medgray,[]);

title(['粒子群算法优化模拟退火算法灰色中值滤波 ']);

subplot(2,3,6)

imshow(medrgb,[]);

title(['粒子群算法优化模拟退火算法彩色中值滤波']);

% That's it, GoodBye :|

3 运行结果

image.gif编辑

image.gif编辑

4 参考文献

[1]张捍东, 廖天红, 岑豫皖. 用模拟退火思想的粒子群算法实现图像分割[J]. 计算机技术与发展, 2010.

[2]吴禄慎, 程伟, 王晓辉. 应用模拟退火粒子群算法优化二维熵图像分割[J]. 计算机工程与设计, 2019, 40(9):8.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
18天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
20天前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
163 5
|
18天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
3天前
|
计算机视觉
MATLAB实现图像分割:Otsu阈值法
Otsu方法(大津法)是一种广泛使用的自动图像阈值分割技术,它通过最大化类间方差来确定最佳阈值。
|
14天前
|
机器学习/深度学习 算法 物联网
基于遗传方法的动态多目标优化算法
基于遗传方法的动态多目标优化算法
|
24天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
142 3
|
29天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
1月前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
29天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
147 14
|
24天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)

热门文章

最新文章