m基于LDPC编译码的matlab误码率仿真,对比SP,MS,NMS以及OMS四种译码算法

简介: MATLAB 2022a仿真实现了LDPC译码算法比较,包括Sum-Product (SP),Min-Sum (MS),Normalized Min-Sum (NMS)和Offset Min-Sum (OMS)。四种算法在不同通信场景有各自优势:SP最准确但计算复杂度高;MS计算复杂度最低但性能略逊;NMS通过归一化提升低SNR性能;OMS引入偏置优化高SNR表现。适用于资源有限或高性能需求的场景。提供的MATLAB代码用于仿真并绘制不同SNR下的误码率曲线。

1.算法仿真效果
matlab2022a仿真结果如下:

image.png
image.png

2.算法涉及理论知识概要
低密度奇偶校验码(LDPC)译码是现代通信系统中一种高效的错误校正技术,广泛应用于无线通信、卫星通信和数据存储等领域。LDPC码因其良好的纠错性能和接近香农极限的潜力而受到重视。本文将详细对比四种主流的迭代译码算法:Sum-Product (SP)、Min-Sum (MS)、Normalized Min-Sum (NMS) 和 Offset Min-Sum (OMS)。

2.1 Sum-Product (SP) 算法
SP算法基于概率论中的信念传播思想,通过迭代的方式逐步修正对每个码字位的估计。它利用校验节点和变量节点之间的消息传递来更新对每个位的置信度。设H为校验矩阵,LLR_y为接收到的软判决信息(对数似然比),消息通过校验节点到变量节点(CN→VN)和变量节点到校验节点(VN→CN)的传递分别表示为:

image.png

2.2 Min-Sum (MS)算法
MS算法是对SP算法的一种简化,它放弃了乘法运算,转而使用最小值操作来近似概率乘积,降低了计算复杂度,但牺牲了一定的性能。

image.png

2.3 Normalized Min-Sum (NMS) 算法
NMS算法是对MS算法的改进,通过引入归一化因子来补偿由于最小值操作导致的性能损失,提高了算法的准确性。

image.png

2.4 Offset Min-Sum (OMS)算法
OMS算法通过引入偏置项(offset)来解决MS算法在高信噪比条件下性能下降的问题,提高了算法的稳健性。

image.png

准确度:SP算法理论上最准确,但计算成本最高。NMS和OMS通过不同机制改进了MS算法的性能,NMS通过归一化提升了低SNR下的性能,而OMS通过偏置项优化了高SNR下的性能。
计算复杂度:MS算法最低,NMS和OMS虽然增加了计算复杂度,但相比SP仍显著降低。
适用场景:对于资源有限的应用,MS和OMS因其较低的复杂度而更受欢迎;在对性能要求极高的场合,NMS或SP可能更合适。
3.MATLAB核心程序
```for jj = 1:1:length(SNR)
%仿真帧
Frames = 50;
error1 = 0;
cout = 0;

sigma  = sqrt(1/10^(SNR(jj)/10));
for i = 1:1:Frames
    [i,SNR(jj) ]

    %编码
    msg         = randi([0, 1], 1, 1008);
    msg_encode  = func_Encoder(Hs, msg);
    %调制
    bpsk_encode = 1 - 2.*msg_encode;

    %AWGN
    bpsk_N      = awgn(bpsk_encode,SNR(jj),'measured');

    %接收
    llr         = 2*bpsk_N/(sigma^2);
    ydecode     = func_MS( H, llr, Iters );
    errs        = sum(msg ~= ydecode);
    error1      = error1 + errs;
    cout        = cout + 1;
end

Ber(1, jj) = error1/(K * cout);

end

figure
semilogy(SNR, Ber,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);

xlabel('Eb/N0(dB)');
ylabel('Ber');
title('最小和MS')
grid on;

save MS.mat SNR Ber
```

相关文章
|
29天前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
50 8
|
1月前
|
算法
m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法,优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码,而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程,根据误码率评估性能并更新解码参数。最终,展示了迭代次数与优化过程的关系,并绘制了SNR与误码率曲线。
29 2
|
1月前
|
算法
m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了Offset Min-Sum (OMS)译码算法与粒子群优化(PSO)结合,以优化偏移参数,提升LDPC码解码性能。PSO通过迭代寻找最小化误码率(BER)的最佳偏移量。核心程序运用PSO进行参数更新和适应度函数(BER)评估,最终在不同信噪比下展示OMS解码性能,并保存结果。
31 0
|
6天前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
3天前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
21小时前
|
算法
基于COPE协议的网络RLNCBR算法matlab性能仿真
摘要: 本研究聚焦于COPE协议与RLNCBR算法(MATLAB仿真),整合随机线性网络编码与背压路由,优化网络编码技术以增强吞吐量与鲁棒性。实验在MATLAB2022a下执行,展示了平均传输次数随接收节点数(N:2-10)变化趋势(P1=...=Pn=0.08,重传间隔100Δt)。COPE协议利用编码机会提高效率,而RLNCBR算法动态调整路径,减少拥塞,提升成功率。数学模型与仿真实验证实算法有效提升网络性能,降低时延与丢包率。[总计239字符]
|
9天前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
11天前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
26 7
|
7天前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
8天前
|
传感器 算法 数据安全/隐私保护
基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真
```markdown 探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。 ```

热门文章

最新文章