【OpenCV学习笔记 023】两种图像分割方法比较
此次研究两种图像分割法,分别是基于形态学的分水岭算法和基于图割理论的GrabCut算法。OpenCV均提供了两张算法或其变种。鉴于研究所需,记录一些知识点,开发平台为OpenCV2.4.9+Qt5.3.2。
一、使用分水岭算法进行图像分割
分水岭变换是一种常用的图像处理算法,在网上很容易搜到详细的原理分析。简单来说,这是一种基于拓扑理论的数学形态学的图像分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
分水岭算法简单,因此存在一些缺陷,如容易导致图像的过度分割。分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。
为消除分水岭算法产生的过度分割,有两种常规的处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。
OpenCV提供了该算法的改进版本,使用预定义的一组标记来引导对图像的分割,该算法是通过cv::watershed函数来实现的。
要实现分水岭算法,首先新建一个类WaterShedSegmentation,在watershedsegmentation.h中添加:
#ifndef WATERSHEDSEGMENTATION_H
#define WATERSHEDSEGMENTATION_H
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
class WaterShedSegmentation
{
public:
void setMarkers(const cv::Mat &markerImage); // 将原图像转换为整数图像
cv::Mat process(const cv::Mat &image); // // 分水岭算法实现
// 以下是两种简化结果的特殊方法
cv::Mat getSegmentation();
cv::Mat getWatersheds();
private:
cv::Mat markers; // 用于非零像素点的标记
};
#endif // WATERSHEDSEGMENTATION_H
接着,在watershedsegmentation.cpp中添加:
#include "watershedsegmentation.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
void WaterShedSegmentation::setMarkers(const cv::Mat &markerImage) // 该函数将原图像转换为整数图像
{
markerImage.convertTo(markers,CV_32S);
}
cv::Mat WaterShedSegmentation::process(const cv::Mat &image)
{
// 使用分水岭算法
cv::watershed(image,markers);
return markers;
}
// 以下是两种简化结果的特殊方法
// 以图像的形式返回分水岭结果
cv::Mat WaterShedSegmentation::getSegmentation()
{
cv::Mat tmp;
// 所有像素值高于255的标签分割均赋值为255
markers.convertTo(tmp,CV_8U);
return tmp;
}
cv::Mat WaterShedSegmentation::getWatersheds()
{
cv::Mat tmp;
markers.convertTo(tmp,CV_8U,255,255);
return tmp;
}
main函数修改如下:
#include <QCoreApplication>
#include "watershedsegmentation.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
// 输入待处理的图像
cv::Mat image= cv::imread("c:/Fig4.41(a).jpg");
if (!image.data)
return 0;
cv::namedWindow("Original Image");
cv::imshow("Original Image",image);
// 输入图像,将其转化为二值图像
cv::Mat binary;
binary= cv::imread("c:/Fig4.41(a).jpg",0);
// 显示二值图像
cv::namedWindow("Binary Image");
cv::imshow("Binary Image",binary);
// 移除噪点
cv::Mat fg;
cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),6);
// 显示前景图像
cv::namedWindow("Foreground Image");
cv::imshow("Foreground Image", fg);
// 识别背景图像,生成的黑色像素对应背景像素
cv::Mat bg;
cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),6);
cv::threshold(bg, bg, 1, 128, cv::THRESH_BINARY_INV);
// 显示背景图像
cv::namedWindow("Background Image");
cv::imshow("Background Image", bg);
// 显示标记图像
cv::Mat markers(binary.size(), CV_8U,cv::Scalar(0));
markers= fg + bg;
cv::namedWindow("Markers");
cv::imshow("Markers", markers);
// 以下进行分水岭算法
WaterShedSegmentation segmenter;
segmenter.setMarkers(markers);
segmenter.process(image);
// 以下是两种处理结果,显示分割结果
cv::namedWindow("Segmentation");
cv::imshow("Segmentation", segmenter.getSegmentation());
cv::namedWindow("Watersheds");
cv::imshow("Watersheds",segmenter.getWatersheds());
return a.exec();
}
效果1:算法识别出属于前景和背景的像素(有误差)。
效果2:组合前景和背景图,形成标记图形,这是分水岭的输入参数。
效果3:分割结果中,标记图像得到更新。
效果4:显示边界图像。
可以看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。但对于不同质量的图像其分割效果不尽相同,但总的来说效果仍需要改进。
二、使用GrabCut算法分割图像
GrabCut是另一种同样较为流行的图像分割算法。GrabCut是在GraphCut基础上改进的一种图像分割算法,它并非基于图像形态学,而是基于图割理论(参考:http://www.cnblogs.com/tornadomeet/archive/2012/11/06/2757585.html)。在使用GrabCut时,需要人工给定一定区域的目标或者背景,然后算法根据设定的参数来进行分割。GrabCut在计算时比分水岭算法更加复杂,尤其适合从静态图像中提取前景照片的应用。
OpenCV中提供了cv::grabcut函数,因此只需提供图像并标记背景像素和前景像素,基于局部的标记,算法即可将图像中的像素进行分割。在这里使用的局部标记方法是定义一个矩形。cv::grabcut的函数定义如下:
cv::grabCut(image, // 输入图像
result, // 分割输出结果
rectangle,// 包含前景物体的矩形
bgModel,fgModel, // 模型
1, // 迭代次数
cv::GC_INIT_WITH_RECT); // 使用矩形进行初始化
在main函数添加:
// GrabCut算法
cv::Mat image= cv::imread("c:/Fig8.04(a).jpg");
// 设定矩形
cv::Rect rectangle(50,70,image.cols-150,image.rows-180);
cv::Mat result; // 分割结果 (4种可能取值)
cv::Mat bgModel,fgModel; // 模型(内部使用)
// 进行GrabCut分割
cv::grabCut(image, result, rectangle, bgModel, fgModel, 1, cv::GC_INIT_WITH_RECT);
// 得到可能为前景的像素
cv::compare(result, cv::GC_PR_FGD, result,cv::CMP_EQ);
// 生成输出图像
cv::Mat foreground(image.size(), CV_8UC3, cv::Scalar(255,255,255));
image.copyTo(foreground, result); // 不复制背景数据
// 包含矩形的原始图像
cv::rectangle(image, rectangle, cv::Scalar(255,255,255),1);
cv::namedWindow("Orginal Image");
cv::imshow("Orginal Image", image);
// 输出前景图像结果
cv::namedWindow("Foreground Of Segmented Image");
cv::imshow("Foreground Of Segmented Image", foreground);
效果:
在函数cv::grabCut中,最后一个参数表示我们使用的是包围盒模式,而该算法支持的输入/输出分割图像可以有四种数值,如函数cv::compare函数中的参数:
cv::GC_BGD:确定属于背景的像素;
cv::GC_FGD:确定属于前景的元素;
cv::GC_PR_BGD:可能属于背景的元素;
cv::GC_PR_FGD:可能属于前景的元素。
在上图中,GrabCut算法通过指定方框区域来提取前景物体。同时,也可将数值cv::GC_BGD和cv::GC_FGD赋予分割图像的某些特定像素,并且把这类分割图像作为cv::grabcut函数的第二个参数(此时需要指定GC_INIT_WITH_MASK作为输入模式)。
基于这些信息,GrabCut通过以下主要步骤创建分割:
- 前景标签(cv::GC_PR_FGD)被临时赋予所有为标记的像素。基于当前的分类,算法将像素归类为颜色或灰度值相似的聚类。
- 通过引入背景与前景像素的边界进行分割。这个优化的过程尝试将标签相似的像素相连接,这里利用了在强度相对已知的区域之间对边界像素的(惩罚?)。这个最优化问题通过GraphCut算法得到高效解决。
- 对获取的分割结果产生新的像素标签,重复聚类过程,找到新的最优解。根据场景的复杂度,得到最佳结果,对于简单的场景,有时只需要一次迭代。
关于GrabCut算法,还需要进一步研究GraphCut才能深刻理解。