【TSP问题】基于免疫算法结合蚁群算法求解旅行商TSP问题含GUI界面

简介: 【TSP问题】基于免疫算法结合蚁群算法求解旅行商TSP问题含GUI界面

1 简介

人工免疫算法具有快速随机的全局搜索能力,但对于系统中的反馈信息利用不足,往往做大量无为的冗余迭代,求解效率低.蚁群算法具有分布式并行全局搜索能力,通过信息素的积累和更新收敛于最优路径上,但初期信息素匮乏,求解速度慢.该文提出一种基于人工免疫算法和蚁群算法的混合算法,采用人工免疫算法生成信息素分布,利用蚁群算法求优化解.将该算法用于求解旅行商问题进行计算机仿真,结果表明,该算法是一种收敛速度和寻优能力都比较好的优化方法.

人工免疫算法是近几年才提出的一种随机优化方法,它模拟生物免疫系统,用亲和力来描述抗体与抗原之间的匹配程度,用排斥力来描述两个抗体之间的相似程度,依据抗体与抗原之间的亲和力以及抗体与抗体之间的排斥力来选择抗体。在用求解优化问题时,一个抗体用一个字符串表示,满足约束条件的最优解即是抗原,候选解即是抗体。抗体与抗原之间的亲和力反映了候选解与最

优解的接近程度,也即反映候选解对目标函数和约束条件的满足程度;抗体与抗体之间的排斥力反映了不同候选解之间的异同,也即反映了抗体的多样性。保持抗体的多样性可以防止算法陷入局部最优解。具有快速随机的全局搜索能力,但对于系统中的反馈信息利用不足,当求解到一定范围时往往做大

量无为的冗余迭代,求解效率低。蚁群算法是由意大利学者 等在90 年代初提出来的一类新的模拟进化算法,它通过信息素的积累和更新来寻求最优解。

它的特点是模拟自然界中蚂蚁的群体行为。科学家们发现,蚂蚁有能力在没有任何提示下找到从巢穴到食物源的最短路径,并且能随环境的变化而变化,适应性地搜索新的路径,产生新的选择。经研究发现,其根本原因是蚂蚁在寻找食物源时,在其走过的路上释放一种特殊的分泌物FF信息素,后来的蚂蚁选择该路径的概率与当时这条路径上该物质的强度成正比。当一定路径上通过的蚂蚁越来越多时,其留下的信息素轨迹也越来越多,后来的蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度。而强度大的信息素会吸引更多的蚂蚁,从而形成一种正反馈机制。通过这种正反馈机制,蚂蚁最终可以发

现最短路径。特别是,当蚂蚁巢穴与食物源之间出现障碍物时,蚂蚁不仅可以绕过障碍物,而且通过蚁群信息素轨迹在不同路径上的变化,经过一定时间的正反馈,最终收敛到最短路径。&’& 具有分布式并行全局搜索能力,但由于初期信息素匮乏,致使求解速度缓慢。

该文提出的算法汲取了人工免疫算法和蚁群算法的优点,采用人工免疫算法生成信息素分布,利用蚁群算法求优化解,优势互补,在收敛速度和寻优能力两方面较原有算法都有明显改善。当用于求解TSP 问题时,该算法在收敛速度上优于 ACO,在寻优能力上优于AIA,是一种收敛速度和寻优能力都比较好

的优化方法。

2 部分代码

function pher=as_pher_update(pher_evap_rate,city_num,ant_num,dist,as_type,pher,ant)%蚂蚁系统信息素更新pher=pher*pher_evap_rate;                           %信息素蒸发switch as_type    case 'ant_density'          for i=1:ant_num                             %蚁密系统            for j=1:city_num                m=ant(i).tour(j);                n=ant(i).tour(j+1);                pher(m,n)=pher(m,n)+1;                pher(n,m)=pher(m,n);            end        end    case 'ant_quantity'        for i=1:ant_num                             %蚁量系统            for j=1:city_num                m=ant(i).tour(j);                n=ant(i).tour(j+1);                pher(m,n)=pher(m,n)+1/dist(m,n);                pher(n,m)=pher(m,n);            end        end    case 'ant_cycle'        for i=1:ant_num                             %蚁周系统            for j=1:city_num                m=ant(i).tour(j);                n=ant(i).tour(j+1);                pher(m,n)=pher(m,n)+1/ant(i).length;                pher(n,m)=pher(m,n);            end        endend

3 仿真结果

4 参考文献

[1]胡纯德, 祝延军, 高随祥. 基于人工免疫算法和蚁群算法求解旅行商问题[J]. 计算机工程与应用, 2004, 040(034):60-63.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
8月前
|
机器学习/深度学习 算法 TensorFlow
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
129 0
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
|
14天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
2月前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
29天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
150 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
3月前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
4月前
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
97 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
3月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
7月前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
7月前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。

热门文章

最新文章