基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目

简介: 基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目


功能演示

摘要:手势识别是一种通过技术手段识别视频图像中人物手势的技术。本文详细介绍了手势识别实现的技术原理,同时基于pythonpyqt开发了一款带UI界面的手势识别系统软件,以便于进行结果显示。手势识别采用了mediapipe的深度学习算法进行手掌检测与手部的关键点定位,实时检测速度快、识别精度高。该软件可以支持图片视频以及摄像头这3种方式进行手部动作识别,并可在界面实时显示相关检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。


前言

手势识别技术是一种将人类手部的动作转化为机器可理解形式的技术。它可以通过分析图像或视频中的手部或身体动作,来识别并理解用户的意图或指令。手势识别技术广泛应用于人机交互、虚拟现实、增强现实、智能监控等领域。通过手势识别技术,用户可以使用手势进行操作和交互,从而提供更加自然、直观的用户体验。

手势识别技术目前正处于快速发展阶段,并取得了很多重要的研究进展。以下是手势识别技术目前常见的一些研究:

1.传感器技术:传感器技术在手势识别中起着关键作用。例如,深度相机、红外传感器和摄像头等设备能够捕捉到人体的姿态和动作信息。

2.深度学习:深度学习方法在手势识别中被广泛应用。通过使用深度神经网络模型,可以实现对复杂手势的准确识别和分类。

3.实时性:实时手势识别是当前研究的一个重点。研究人员致力于提高算法的效率和响应速度,以满足实时交互的需求。

4.多模态融合:多模态手势识别结合了多种传感器数据,如图像、声音和运动数据,以提高识别准确度和鲁棒性。

5.应用:手势识别技术在各个领域都有广泛应用。例如,在虚拟现实和增强现实中,手势识别可用于交互和控制;在医疗领域,手势识别可用于康复训练和手术操作辅助等。

博主根据Mediapipe框架中的深度学习算法进行手势识别检测,并基于此开发了一款结果可视化的手势识别系统,可以通过图片视频摄像头3种方式进行手部跟踪与手势识别,并且展示相应识别结果。可以识别数字以及其他多种常见的手部姿势,感兴趣的小伙伴可以自己试试。

软件初始界面如下图:

手势识别的界面如下,可识别画面中存在的多个手势,并区分左右手,同时也支持开启摄像头或视频检测:

一、软件核心功能介绍及效果演示

手势识别系统主要功能包括以下几个部分:

1. 支持图片视频以及摄像头这3种方式进行手部动作识别;
2. 可区分左右手,并显示相应手部的坐标位置,以及21个手部关键点;
3. 可显示每只手的伸出手指数
4. 可识别多种常见手势结果,并在界面上显示;

(1)图片手势识别

点击打开图片按钮,选择需要识别的图片即可,操作演示如下:

(2)视频手势识别

点击打开视频按钮,选择需要识别的视频即可,操作演示如下:

(3)摄像头手势识别

点击打开摄像头按钮,即可开启摄像头,再次点击该按钮,会关闭摄像头,操作演示如下:

二、手势识别的基本原理

1.基本原理

Mediapipe是Google开源的一个多媒体处理框架,旨在为开发者提供高效、可扩展的数据流图(dataflow graph)方式来构建多媒体应用程序。它提供了一系列预训练好的模型和工具,用于处理视频、音频、姿势估计、手势识别等多媒体任务。

Mediapipe进行手势识别的基本原理是通过检测和跟踪手部关键点来识别手势。它使用了深度学习模型和计算机视觉技术来实现这一目标。首先,mediapipe使用大量的手部图像数据进行训练,以构建一个手部姿势估计模型。在进行检测时,mediapipe加载训练好的模型,并将输入的图像传递给模型。模型会检测图像中的手部区域,并定位手部关键点的位置。一旦检测到手部关键点的位置,mediapipe会利用计算机视觉技术对这些关键点进行跟踪。这有助于在连续帧之间保持关键点的一致性,以提高识别准确性。然后,根据手部关键点的位置和动作,mediapipe可以将手势分为不同的类别。这些类别可以包括手势如拳头、平手、手势指令等。

2. 代码实现

Mediapipe库基于C++实现,并提供了Python接口,使得开发者能够方便地使用这些功能。下面是使用mediapipe进行手势识别的基本原理:

安装:首先,需要安装mediapipe库。可以通过pip命令进行安装:

pip install mediapipe

导入库:导入mediapipe库和其他必要的依赖项。

python
import cv2
import mediapipe as mp

加载模型:使用mediapipe加载已经训练好的手部关键点模型。

mp_hands = mp.solutions.hands
hands = mp_hands.Hands()
mp_drawing = mp.solutions.drawing_utils

手势识别:打开摄像头并读取视频帧,将每一帧传递给hands.process()方法进行手势识别。

# coding:utf-8
cap = cv2.VideoCapture(0)  # 打开摄像头
while True:
    ret, frame = cap.read()  # 读取视频帧
    if not ret:
        break
    image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  # 转换颜色空间
    results = hands.process(image)  # 手势识别
    # 处理识别结果
    if results.multi_hand_landmarks:
        for hand_landmarks in results.multi_hand_landmarks:
            mp_drawing.draw_landmarks(
                frame,
                hand_landmarks,
                mp_hands.HAND_CONNECTIONS) # 用于指定地标如何在图中连接。
            for point in hand_landmarks.landmark:
                x = int(point.x * frame.shape[1])
                y = int(point.y * frame.shape[0])
                cv2.circle(frame, (x, y), 5, (0, 255, 0), -1) # 画出关键点
    cv2.imshow('Gesture Recognition', frame)  # 显示结果
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

在上述代码中,我们首先导入了mediapipe库和其他必要的依赖项。然后,使用mp.solutions.hands.Hands()加载手部关键点模型,并打开摄像头读取视频帧。每一帧都传递给hands.process()方法进行手势识别。返回的结果包含检测到的手部关键点的位置信息,我们可以根据这些信息进行相应的处理。手部关键点位置如下图:

通过遍历识别结果中的多个手部关键点,我们可以获取每个关键点在图像中的坐标,并在图像上绘制圆形表示关键点的位置。最后,使用cv2.imshow()方法显示结果,并通过cv2.waitKey()检测按键操作。

这就是使用mediapipe进行手势识别的基本原理。通过结合mediapipe库提供的预训练模型和API,开发者可以更轻松地构建手势识别应用程序。

下图是摄像头检测结果:

根据以上原理,博主基于python+ pyqt5开发了一个手势识别系统软件,可以用于显示手势识别的结果。也就是第二部分介绍的软件功能内容。关于该手势识别系统的涉及到的完整源码、UI界面代码等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【手势识别】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、UI文件等(见下图),获取方式见文末:

注意:该代码采用Pycharm+Python3.8开发,运行界面的主程序为MainProgram.py,,摄像头测试脚本可运行MyCameraTest.py。并提供了环境一键配置脚本文件:installPackages.py。为确保程序顺利运行,请按照程序环境配置说明.txt配置软件运行所需环境。


相关文章
|
5天前
|
数据库 开发者 Python
实战指南:用Python协程与异步函数优化高性能Web应用
【7月更文挑战第15天】Python的协程与异步函数优化Web性能,通过非阻塞I/O提升并发处理能力。使用aiohttp库构建异步服务器,示例代码展示如何处理GET请求。异步处理减少资源消耗,提高响应速度和吞吐量,适用于高并发场景。掌握这项技术对提升Web应用性能至关重要。
28 10
|
4天前
|
并行计算 监控 数据处理
构建高效Python应用:并发与异步编程的实战秘籍,IO与CPU密集型任务一网打尽!
【7月更文挑战第16天】Python并发异步提升性能:使用`asyncio`处理IO密集型任务,如网络请求,借助事件循环实现非阻塞;`multiprocessing`模块用于CPU密集型任务,绕过GIL进行并行计算。通过任务类型识别、任务分割、避免共享状态、利用现代库和性能调优,实现高效编程。示例代码展示异步HTTP请求和多进程数据处理。
22 8
|
3天前
|
算法 数据挖掘 计算机视觉
Python并查集实战宝典:从入门到精通,让你的数据结构技能无懈可击!
【7月更文挑战第17天】并查集,如同瑞士军刀,是解决元素分组问题的利器,应用于好友关系、像素聚类、碰撞检测和连通性分析等场景。本文从基础到实战,介绍并查集的初始化、查找与路径压缩、按秩合并,以及在Kruskal算法中的应用。通过并查集,实现高效动态集合操作,对比哈希表和平衡树,其在合并与查找上的性能尤为突出。学习并查集,提升算法解决复杂问题的能力。
|
1天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
【7月更文挑战第19天】Trie树,又称前缀树,是优化字符串搜索的高效数据结构。通过利用公共前缀,Trie树能快速插入、删除和查找字符串。
15 2
|
2天前
|
监控 前端开发 API
实战指南:使用Python Flask与WebSocket实现高效的前后端分离实时系统
【7月更文挑战第18天】构建实时Web应用,如聊天室,可借助Python的Flask和WebSocket。安装Flask及Flask-SocketIO库,创建Flask应用,处理WebSocket事件。前端模板通过Socket.IO库连接服务器,发送和接收消息。运行应用,实现实时通信。此示例展现了Flask结合WebSocket实现前后端实时交互的能力。
|
4天前
|
前端开发 JavaScript UED
Python Web应用中的WebSocket实战:前后端分离时代的实时数据交换
【7月更文挑战第16天】在前后端分离的Web开发中,WebSocket解决了实时数据交换的问题。使用Python的Flask和Flask-SocketIO库,后端创建WebSocket服务,监听并广播消息。前端HTML通过JavaScript连接到服务器,发送并显示接收到的消息。WebSocket适用于实时通知、在线游戏等场景,提升应用的实时性和用户体验。通过实战案例,展示了如何实现这一功能。
|
5天前
|
调度 Python
揭秘Python并发编程核心:深入理解协程与异步函数的工作原理
【7月更文挑战第15天】Python异步编程借助协程和async/await提升并发性能,减少资源消耗。协程(async def)轻量级、用户态,便于控制。事件循环,如`asyncio.get_event_loop()`,调度任务执行。异步函数内的await关键词用于协程间切换。回调和Future对象简化异步结果处理。理解这些概念能写出高效、易维护的异步代码。
12 2
|
1天前
|
中间件 API 开发者
深入理解Python Web框架:中间件的工作原理与应用策略
【7月更文挑战第19天】Python Web中间件摘要:**中间件是扩展框架功能的关键组件,它拦截并处理请求与响应。在Flask中,通过`before_request`和`after_request`装饰器模拟中间件行为;Django则有官方中间件系统,需实现如`process_request`和`process_response`等方法。中间件用于日志、验证等场景,但应考虑性能、执行顺序、错误处理和代码可维护性。
7 0
|
Python 编解码 Shell