基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目

简介: 基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目


功能演示

摘要:手势识别是一种通过技术手段识别视频图像中人物手势的技术。本文详细介绍了手势识别实现的技术原理,同时基于pythonpyqt开发了一款带UI界面的手势识别系统软件,以便于进行结果显示。手势识别采用了mediapipe的深度学习算法进行手掌检测与手部的关键点定位,实时检测速度快、识别精度高。该软件可以支持图片视频以及摄像头这3种方式进行手部动作识别,并可在界面实时显示相关检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。


前言

手势识别技术是一种将人类手部的动作转化为机器可理解形式的技术。它可以通过分析图像或视频中的手部或身体动作,来识别并理解用户的意图或指令。手势识别技术广泛应用于人机交互、虚拟现实、增强现实、智能监控等领域。通过手势识别技术,用户可以使用手势进行操作和交互,从而提供更加自然、直观的用户体验。

手势识别技术目前正处于快速发展阶段,并取得了很多重要的研究进展。以下是手势识别技术目前常见的一些研究:

1.传感器技术:传感器技术在手势识别中起着关键作用。例如,深度相机、红外传感器和摄像头等设备能够捕捉到人体的姿态和动作信息。

2.深度学习:深度学习方法在手势识别中被广泛应用。通过使用深度神经网络模型,可以实现对复杂手势的准确识别和分类。

3.实时性:实时手势识别是当前研究的一个重点。研究人员致力于提高算法的效率和响应速度,以满足实时交互的需求。

4.多模态融合:多模态手势识别结合了多种传感器数据,如图像、声音和运动数据,以提高识别准确度和鲁棒性。

5.应用:手势识别技术在各个领域都有广泛应用。例如,在虚拟现实和增强现实中,手势识别可用于交互和控制;在医疗领域,手势识别可用于康复训练和手术操作辅助等。

博主根据Mediapipe框架中的深度学习算法进行手势识别检测,并基于此开发了一款结果可视化的手势识别系统,可以通过图片视频摄像头3种方式进行手部跟踪与手势识别,并且展示相应识别结果。可以识别数字以及其他多种常见的手部姿势,感兴趣的小伙伴可以自己试试。

软件初始界面如下图:

手势识别的界面如下,可识别画面中存在的多个手势,并区分左右手,同时也支持开启摄像头或视频检测:

一、软件核心功能介绍及效果演示

手势识别系统主要功能包括以下几个部分:

1. 支持图片视频以及摄像头这3种方式进行手部动作识别;
2. 可区分左右手,并显示相应手部的坐标位置,以及21个手部关键点;
3. 可显示每只手的伸出手指数
4. 可识别多种常见手势结果,并在界面上显示;

(1)图片手势识别

点击打开图片按钮,选择需要识别的图片即可,操作演示如下:

(2)视频手势识别

点击打开视频按钮,选择需要识别的视频即可,操作演示如下:

(3)摄像头手势识别

点击打开摄像头按钮,即可开启摄像头,再次点击该按钮,会关闭摄像头,操作演示如下:

二、手势识别的基本原理

1.基本原理

Mediapipe是Google开源的一个多媒体处理框架,旨在为开发者提供高效、可扩展的数据流图(dataflow graph)方式来构建多媒体应用程序。它提供了一系列预训练好的模型和工具,用于处理视频、音频、姿势估计、手势识别等多媒体任务。

Mediapipe进行手势识别的基本原理是通过检测和跟踪手部关键点来识别手势。它使用了深度学习模型和计算机视觉技术来实现这一目标。首先,mediapipe使用大量的手部图像数据进行训练,以构建一个手部姿势估计模型。在进行检测时,mediapipe加载训练好的模型,并将输入的图像传递给模型。模型会检测图像中的手部区域,并定位手部关键点的位置。一旦检测到手部关键点的位置,mediapipe会利用计算机视觉技术对这些关键点进行跟踪。这有助于在连续帧之间保持关键点的一致性,以提高识别准确性。然后,根据手部关键点的位置和动作,mediapipe可以将手势分为不同的类别。这些类别可以包括手势如拳头、平手、手势指令等。

2. 代码实现

Mediapipe库基于C++实现,并提供了Python接口,使得开发者能够方便地使用这些功能。下面是使用mediapipe进行手势识别的基本原理:

安装:首先,需要安装mediapipe库。可以通过pip命令进行安装:

pip install mediapipe

导入库:导入mediapipe库和其他必要的依赖项。

python
import cv2
import mediapipe as mp

加载模型:使用mediapipe加载已经训练好的手部关键点模型。

mp_hands = mp.solutions.hands
hands = mp_hands.Hands()
mp_drawing = mp.solutions.drawing_utils

手势识别:打开摄像头并读取视频帧,将每一帧传递给hands.process()方法进行手势识别。

# coding:utf-8
cap = cv2.VideoCapture(0)  # 打开摄像头
while True:
    ret, frame = cap.read()  # 读取视频帧
    if not ret:
        break
    image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  # 转换颜色空间
    results = hands.process(image)  # 手势识别
    # 处理识别结果
    if results.multi_hand_landmarks:
        for hand_landmarks in results.multi_hand_landmarks:
            mp_drawing.draw_landmarks(
                frame,
                hand_landmarks,
                mp_hands.HAND_CONNECTIONS) # 用于指定地标如何在图中连接。
            for point in hand_landmarks.landmark:
                x = int(point.x * frame.shape[1])
                y = int(point.y * frame.shape[0])
                cv2.circle(frame, (x, y), 5, (0, 255, 0), -1) # 画出关键点
    cv2.imshow('Gesture Recognition', frame)  # 显示结果
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

在上述代码中,我们首先导入了mediapipe库和其他必要的依赖项。然后,使用mp.solutions.hands.Hands()加载手部关键点模型,并打开摄像头读取视频帧。每一帧都传递给hands.process()方法进行手势识别。返回的结果包含检测到的手部关键点的位置信息,我们可以根据这些信息进行相应的处理。手部关键点位置如下图:

通过遍历识别结果中的多个手部关键点,我们可以获取每个关键点在图像中的坐标,并在图像上绘制圆形表示关键点的位置。最后,使用cv2.imshow()方法显示结果,并通过cv2.waitKey()检测按键操作。

这就是使用mediapipe进行手势识别的基本原理。通过结合mediapipe库提供的预训练模型和API,开发者可以更轻松地构建手势识别应用程序。

下图是摄像头检测结果:

根据以上原理,博主基于python+ pyqt5开发了一个手势识别系统软件,可以用于显示手势识别的结果。也就是第二部分介绍的软件功能内容。关于该手势识别系统的涉及到的完整源码、UI界面代码等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【手势识别】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、UI文件等(见下图),获取方式见文末:

注意:该代码采用Pycharm+Python3.8开发,运行界面的主程序为MainProgram.py,,摄像头测试脚本可运行MyCameraTest.py。并提供了环境一键配置脚本文件:installPackages.py。为确保程序顺利运行,请按照程序环境配置说明.txt配置软件运行所需环境。


相关文章
|
14小时前
|
机器学习/深度学习 人工智能 算法
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 '美式足球', '棒球', '篮球', '台球', '保龄球', '板球', '足球', '高尔夫球', '曲棍球', '冰球', '橄榄球', '羽毛球', '乒乓球', '网球', '排球'等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。
15 7
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
|
2天前
|
存储 算法 Python
python常用算法(5)——树,二叉树与AVL树(一)
python常用算法(5)——树,二叉树与AVL树
|
2天前
|
存储 算法 Shell
python常用算法(5)——树,二叉树与AVL树(三)
python常用算法(5)——树,二叉树与AVL树
|
2天前
|
算法 Python
python常用算法(5)——树,二叉树与AVL树(二)
python常用算法(5)——树,二叉树与AVL树
|
1天前
|
人工智能 算法 物联网
求解三维装箱问题的启发式深度优先搜索算法(python)
求解三维装箱问题的启发式深度优先搜索算法(python)
6 0
|
3天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
18 6
|
1天前
|
缓存 算法
基于机会网络编码(COPE)的卫星网络路由算法matlab仿真
**摘要:** 该程序实现了一个基于机会网络编码(COPE)的卫星网络路由算法,旨在提升无线网络的传输效率和吞吐量。在MATLAB2022a中测试,结果显示了不同数据流个数下的网络吞吐量。算法通过Dijkstra函数寻找路径,计算编码机会(Nab和Nx),并根据编码机会减少传输次数。当有编码机会时,中间节点执行编码和解码操作,优化传输路径。结果以图表形式展示,显示数据流与吞吐量的关系,并保存为`R0.mat`。COPE算法预测和利用编码机会,适应卫星网络的动态特性,提高数据传输的可靠性和效率。
|
3天前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
8天前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。
|
8天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```