基于禁忌搜索算法的TSP路径规划matlab仿真

本文涉及的产品
大数据开发治理平台 DataWorks,不限时长
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: **摘要:**使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。

1.程序功能描述
基于禁忌搜索算法的TSP路径规划,输出优化收敛曲线以及路线规划图。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg

3.核心程序
```for it = 1:Iteration
it
% 初始化本次迭代的最佳新解代价为正无穷
bestnewsol.Cost = inf;

% 遍历所有动作并尝试应用它们  
for i = 1:Nact
    if TC(i) == 0% 如果这个动作不在Tabu列表中  

newsol.Position = func_Action(sol.Position, ActionList{i});
newsol.Cost = Js(newsol.Position);% 计算新解的代价
newsol.ActionIndex = i;% 记录应用的动作索引
% 如果新解的代价更好,则更新本次迭代的最佳新解
if newsol.Cost<= bestnewsol.Cost
bestnewsol = newsol;
end
end
end

% 用最佳新解更新当前解  
sol = bestnewsol;

% 更新Tabu列表  
for i = 1:Nact
    if i == bestnewsol.ActionIndex% 如果这个动作是最佳新解的动作  
        TC(i) = TL;       % 将其添加到Tabu列表中  
    else
        TC(i) = max(TC(i)-1, 0);% 否则减少Tabu计数器  
    end
end

% 如果找到了更好的解,则更新最佳解  
if sol.Cost<= BestSol.Cost

BestSol = sol;
end

% 保存最佳代价 

BestCost(it) = BestSol.Cost;

% 绘制最佳解  

figure(1);
func_plot(BestSol);
pause(0.01);

end
% 只保留实际迭代次数的最佳代价
BestCost = BestCost(1:it);

%% Results

figure;
plot(BestCost, 'LineWidth', 2);
xlabel('Iteration');
ylabel('Best Cost');
grid on;
23

```

4.本算法原理
基于禁忌搜索算法的TSP(旅行商问题)路径规划是一种求解TSP问题的优化算法。禁忌搜索算法是一种启发式搜索方法,它通过避免重复搜索和陷入局部最优解来提高搜索效率。在TSP问题中,禁忌搜索算法通过不断地调整路径中的城市顺序来寻找最优路径。

4.1 TSP问题描述
TSP问题是一个经典的组合优化问题,其目标是找到访问一系列城市并返回起点的最短可能路径。给定一个城市列表和每对城市之间的距离,TSP问题的解是一个排列,它表示访问每个城市一次并返回起点的顺序。

4.2 禁忌搜索算法原理
禁忌搜索算法是一种基于局部搜索的元启发式算法,它通过引入禁忌列表来避免重复搜索和陷入局部最优解。禁忌搜索算法从一个初始解开始,然后在其邻域内搜索更好的解。搜索过程中,算法会记住已经访问过的解,并将它们加入到禁忌列表中,以避免在近期内重复访问。当搜索到一定程度后,禁忌列表中的解会逐渐被释放,从而允许算法在更大的范围内搜索。

4.3 算法步骤
禁忌搜索算法求解TSP问题的步骤大致如下:

初始化:选择一个初始路径作为当前解,并初始化禁忌列表为空。

邻域搜索:定义当前解的邻域。在TSP问题中,邻域通常通过交换、插入或逆序等操作来生成新的路径。

评估:计算邻域内所有解的目标函数值(路径总长度)。

选择:从邻域中选择一个非禁忌的最优解作为新的当前解。如果邻域中的所有解都被禁忌,则选择其中最好的解,并更新禁忌列表。

更新禁忌列表:将新选择的解加入到禁忌列表中,并移除最早加入的解(如果禁忌列表已满)。

6806c293a18f1c9f713e92e18422d7e7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

终止条件:如果达到预设的最大迭代次数或满足其他终止条件,则停止搜索;否则,返回步骤2。

相关文章
|
15小时前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
1天前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
2天前
|
传感器 算法 数据安全/隐私保护
基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真
```markdown 探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。 ```
|
3天前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
5天前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
18 7
|
5天前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
7天前
|
算法 数据挖掘
MATLAB数据分析、从算法到实现
MATLAB数据分析、从算法到实现
|
13天前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。
|
13天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
14天前
|
算法
基于PID-bang-bang控制算法的卫星姿态控制matlab仿真
该文主要介绍了一个基于PID-bang-bang控制算法的卫星姿态控制系统。在MATLAB2022a中进行了仿真,生成了控制收敛曲线和姿态调整动画。系统通过PID控制器减少误差,结合Bang-Bang控制实现快速响应。核心程序涉及卫星位置、推力向量的计算及动画绘制。PID控制器利用比例、积分、微分项调整输出,Bang-Bang控制则在误差超出阈值时提供即时修正。两者结合以平衡控制精度和响应速度,适应卫星姿态的精确调节需求。