【图像重建】基于先验和运动的重建 (PRIMOR)实现口腔CT图像重建附matlab代码和论文

简介: 【图像重建】基于先验和运动的重建 (PRIMOR)实现口腔CT图像重建附matlab代码和论文

1 简介

Low-dose protocols for respiratory gating in cardiothoracic small-animal imaging lead to

streak artifacts in the images reconstructed with a Feldkamp-Davis-Kress (FDK) method.

We propose a novel prior- and motion-based reconstruction (PRIMOR) method, which

improves prior-based reconstruction (PBR) by adding a penalty function that includes a

model of motion. The prior image is generated as the average of all the respiratory gates,

reconstructed with FDK. Motion between respiratory gates is estimated using a nonrigid

registration method based on hierarchical B-splines. We compare PRIMOR with an equiva

lent PBR method without motion estimation using as reference the reconstruction of high

dose data. From these data acquired with a micro-CT scanner, different scenarios were

simulated by changing photon flux and number of projections. Methods were evaluated in

terms of contrast-to-noise-ratio (CNR), mean square error (MSE), streak artefact indicator

(SAI), solution error norm (SEN), and correction of respiratory motion. Also, to evaluate the

effect of each method on lung studies quantification, we have computed the Jaccard similar

ity index of the mask obtained from segmenting each image as compared to those obtained

from the high dose reconstruction. Both iterative methods greatly improved FDK reconstruc

tion in all cases. PBR was prone to streak artifacts and presented blurring effects in bone

and lung tissues when using both a low number of projections and low dose. Adopting PBR

as a reference, PRIMOR increased CNR up to 33% and decreased MSE, SAI and SEN up

to 20%, 4% and 13%, respectively. PRIMOR also presented better compensation for respi

ratory motion and higher Jaccard similarity index. In conclusion, the new method proposed

for low-dose respiratory gating in small-animal scanners shows an improvement in image

quality and allows a reduction of dose or a reduction of the number of projections between

two and three times with respect to previous PBR approaches.

2 部分代码

%% The following lines provides the parameters used to generate the matrix% operator, G, using IRT:% n_m         = 1;% numPerProj  = 350;% N           = [350 350];% n_x         = N(1);% numProj     = [360]% totalAngle  = [360];% binning     = 4;% n_ang = numProj;% det_z_count = 1; detector_count= n_x; pixel_count=n_x*n_x;% ds          = 50e-4*binning; % pixel sixe= min pixel*binning% dx          = ds/1.6;% cg          = sino_geom('fan','nb',n_x, 'na', n_ang, ...%     'ds',ds, 'orbit',-totalAngle, ...%     'offset_s', 0.0, ...%     'dsd', 35.2, 'dod', 13.2, 'dfs', inf);% ig          = image_geom('nx', n_x, 'ny', n_x,'dx', dx);% G           = Gtomo2_dscmex(cg, ig);% geom        = fbp2(cg, ig);% FORWARD OPERATORif 0    % It requires IRT software    % Load Forward Operator precomputed in Linux system. If it does not    % work, run the code above     load('G_linux','geom','G');                                         end% READ SIMULATED DATA %% HIGH DOSE DATA (ideal data). % Target image acquired from a high dose protocol (dosis four times% the dosis used for static imaging)load('image_HighDose','uTarget');N           = size(uTarget);% Display four respiratory gatesfigure;for it = 1:4    imagesc(uTarget(:,:,it)); colormap gray; axis image; colorbar;    title(['High dose, gate ' num2str(it)]);    pause(0.3);end% STANDARD DOSE DATA: Standard dose for static imaging leads to irregularly% distributed % Data for different scenarios can be found at http://dx.doi.org/10.5281/zenodo.15685nameData    = 'data_I0By6_120p';         % Dose reduction by 6load(nameData,'dataAll');Nd          = size(dataAll);% Undersampling patternRAll        = dataAll>0;% -------------------------------------------------------------------------% PRIOR image%% Prior image as the average imageRsum        = sum(RAll,3);dataAllAv   = sum(dataAll,3);dataAllAv(Rsum>0) = dataAllAv(Rsum>0)./Rsum(Rsum>0);if 0     % To compute the reference image download the IRT code and run this    % part    uref     = fbp2(dataAllAv, geom); uref(uref<0) = 0;    gaussianFilter = fspecial('gaussian', [5, 5], 3); % [7 7], 5 stronger filter if the prior edges is a problem    uref_aux = imfilter(uref, gaussianFilter, 'symmetric', 'conv');    uref        = uref_aux;    else    % Load precomputed prior image    load('RefImage_I0By6_120p','uref');end% -------------------------------------------------------------------------% FBP reconstruction using IRT softwareframeThis   = 1;if 0     % FDK reconstruction, it requires IRT code     im          = fbp2(dataAll(:,:,frameThis), geom); im(im<0) = 0;else    % Load precomputed FDK reconstruction        load('FDK_I0By6_120p','im');endfigure;subplot(2,2,1);imagesc(uTarget(:,:,frameThis)); title('Target gate 1 (high dose image)'); colorbar;subplot(2,2,2);imagesc(dataAll(:,:,frameThis)); title('Low dose data (120 proj., dose by 6)'); colorbar;subplot(2,2,3);imagesc(im*prod(Nd(1:2))/nnz(RAll(:,:,frameThis))); title('FDK reconstruction'); colorbar; axis image;subplot(2,2,4);imagesc(uref(:,:,frameThis)); title('Prior image: sum of four gates'); colorbar; colormap gray;% -------------------------------------------------------------------------% Create the support (circle)[n_x_u,n_y_u,n_z_u] = size(uTarget);[X,Y]       = meshgrid(linspace(1,n_x_u,n_x_u),linspace(1,n_x_u,n_x_u));X           = X-n_x_u/2;Y           = Y-n_x_u/2;indCir      = find(sqrt(X.^2+Y.^2)<=n_x_u/2);mask        = zeros(N(1:2));mask(indCir)= 1;% Apply mask to the prior imageuref        = uref.*mask;% -------------------------------------------------------------------------% PBR methodif 0    % To run PBR method, run this part    matlabpool(4); % comment if matlabpool not available    mu          = 2;    lambda      = 1;    nBreg       = 25;    alpha       = 0.4;    beta        = 0.2;    [uPbr,errPbr] = PBR_CT(G,dataAll,RAll,N,uref,mu,lambda,alpha,beta,nBreg,uTarget);        matlabpool close; else    % Load PBR result already computed    load('PBR_Rec_I0By6_120p','uPbr','errPbr');end% -------------------------------------------------------------------------% PRIMOR method% Registration stepif 0    % To compute the registration, download the FFD registration software    % and run this part (it takes ~2min)        % Compute the registration step    matlabpool(8); % comment if matlabpool not available        % Parameters for the registration step    Options.Penalty     = 1e-4;    Options.Registration= 'NonRigid';    Options.MaxRef      = 3;    Options.Similarity  = 'sd';        % Estimate the temporal operator, computed by the registration of    % consecutive gates from previous reconstruction (we used PBR)    u0          = uPbr;    [GridAll,SpacingAll,GridDAll,SpacingDAll] = ComputeSplineRegTwoDirectionsPoolDouble(u0,Options);    TParameters.GridAll         = GridAll;    TParameters.SpacingAll      = SpacingAll;    TParameters.GridDAll        = GridDAll;    TParameters.SpacingDAll     = SpacingDAll;    matlabpool close; else    % Load registration result already computed    load('TParameters_I0By6_120p','TParameters');end% Reconstruction stepmu          = 2;lambda      = 1;alpha       = 0.4;beta        = 0.2;gamma       = 0.5;nBreg       = 50;if 0    % To run PRIMOR method download FFD registration software and IRT    % software and execute this part  (it takes ~ 1h 20min)        matlabpool(4); % comment if matlabpool not available                   [uPrimor,errPrimor] = PRIMOR_CT(TParameters,G,dataAll,RAll,N,uref,mu,lambda,gamma,alpha,beta,nBreg,uTarget);    % Reconstructed image and auxiliary variables are displayed for TV and    % prior terms, for some iteration numbers. The number of nonzero    % coefficients on the respective transformed domains are given as a    % precentage    matlabpool close;else    % Load PRIMOR result already computed   load('PRIMOR_Rec_I0By6_120p','uPrimor','errPrimor');end% -------------------------------------------------------------------------% Images for ideal image (high dose) and respiratory gated data with% six-fold dose reduction reconstructed with FDK, PBR and PRIMOR methodsfigure;subplot(2,2,1);imagesc(uTarget(:,:,frameThis)); axis image; axis off; colormap gray;title('FDK, high dose');ca = caxis;subplot(2,2,2);imagesc(im*prod(Nd(1:2))/nnz(RAll(:,:,frameThis))); axis image; axis off; colormap gray;caxis(ca); title('FDK, low dose');subplot(2,2,3);imagesc(uPbr(:,:,frameThis)); axis image; axis off; colormap gray;caxis(ca); title('PBR, low dose');subplot(2,2,4);imagesc(uPrimor(:,:,frameThis)); axis image; axis off; colormap gray;caxis(ca); title('PRIMOR, low dose');% Zoom imagexZoom        = 120:280;yZoom        = 70:240;figure;subplot(2,2,1);imagesc(uTarget(xZoom,yZoom,frameThis)); axis image; axis off; colormap gray;title('FDK, high dose');ca = caxis;subplot(2,2,2);imagesc(im(xZoom,yZoom,1)*prod(Nd(1:2))/nnz(RAll(:,:,frameThis))); axis image; axis off; colormap gray;caxis(ca); title('FDK, low dose');subplot(2,2,3);imagesc(uPbr(xZoom,yZoom,frameThis)); axis image; axis off; colormap gray;caxis(ca); title('PBR, low dose');subplot(2,2,4);imagesc(uPrimor(xZoom,yZoom,frameThis)); axis image; axis off; colormap gray;caxis(ca); title('PRIMOR, low dose');% Convergence: solution error vs iteration numberfigure; plot(mean(errPbr,2));hold on; plot(mean(errPrimor,2),'r');legend('PBR','PRIMOR'); xlabel('Iteration number'); ylabel('Solution error');% -------------------------------------------------------------------------%

3 仿真结果

4 参考文献

[1] Abascal J ,  Monica A ,  Eugenio M , et al. A Novel Prior- and Motion-Based Compressed Sensing Method for Small-Animal Respiratory Gated CT[J]. Plos One, 2016, 11(3):e0149841.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
4月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章